当前位置: 首页 > news >正文

自助网站建设程序百度经验怎么赚钱

自助网站建设程序,百度经验怎么赚钱,精品源码分享的网站,抖音开放平台1.理论知识 Apriori是一种常用的数据关联规则挖掘方法,它可以用来找出数据集中频繁出现的数据集合。该算法第一次实现在大数据集上的可行的关联规则提取,其核心思想是通过连接产生候选项及其支持度,然后通过剪枝生成频繁项集。 Apriori算法的…

1.理论知识

Apriori是一种常用的数据关联规则挖掘方法,它可以用来找出数据集中频繁出现的数据集合。该算法第一次实现在大数据集上的可行的关联规则提取,其核心思想是通过连接产生候选项及其支持度,然后通过剪枝生成频繁项集。

Apriori算法的主要思想是找出存在于事务数据集中最大的频繁项集,再利用得到的最大频繁项集与预先设定的最小置信度阈值生成强关联规则。

图1.1关键名词解释


2.算法流程图

3.实现代码

def item(dataset):  # 求第一次扫描数据库后的 候选集c1 = []  # 存放候选集元素for x in dataset:  # 求这个数据库中出现了几个元素,然后返回for y in x:if [y] not in c1:c1.append([y])c1.sort()return c1# 计算支持度
def get_frequent_item(dataset, c, min_support):cut_branch = {}  # 用来存放所有项集的支持度的字典for x in c:for y in dataset:if set(x).issubset(set(y)):cut_branch[tuple(x)] = cut_branch.get(tuple(x),0) + 1Fk = []  # 支持度大于最小支持度的项集,  即频繁项集sup_dataK = {}  # 用来存放所有 频繁 项集的支持度的字典for i in cut_branch:if cut_branch[i] >= min_support:Fk.append(list(i))sup_dataK[i] = cut_branch[i]return Fk, sup_dataK# 计算候选集
def get_candidate(Fk, K):  # 求第k次候选集ck = []  # 存放产生候选集for i in range(len(Fk)):for j in range(i + 1, len(Fk)):L1 = list(Fk[i])[:K - 2].sort()L2 = list(Fk[j])[:K - 2].sort()if L1 == L2:if K > 2:new = list(set(Fk[i]) ^ set(Fk[j]))else:new = set()for x in Fk:if set(new).issubset(set(x)) and list(set(Fk[i]) | set(Fk[j])) not in ck:ck.append(list(set(Fk[i]) | set(Fk[j])))return ck# Apriori算法
def Apriori(dataset, min_support=2):c1 = item(dataset)f1, sup_1 = get_frequent_item(dataset, c1, min_support)F = [f1]sup_data = sup_1K = 2while len(F[K - 2]) > 1:ck = get_candidate(F[K - 2], K)  # 求第k次候选集fk, sup_k = get_frequent_item(dataset, ck, min_support)F.append(fk)  # 把新产生的候选集假如Fsup_data.update(sup_k)  # 字典更新,加入新得出的数据K += 1return F, sup_data  # 返回所有频繁项集, 以及存放频繁项集支持度的字典"""
Apriori算法
定义A 1,   B 2,   C 3,   D 4,   E 51 [A C D]       1 3 4
2 [B C E]       2 3 5
3 [A B C E]     1 2 3 5
4 [B E]         2 5min_support = 2 
"""
# 主函数
if __name__ == '__main__':# 数据dataset = [[1, 3, 4],[2, 3, 5],[1, 2, 3, 5],[2, 5]]# 最小支持度设置为2min_support = 2F, sup_data = Apriori(dataset, min_support)print("最小支持度为:\n ", min_support)print('------------------------------------------------------')print("已知关系:\n ", dataset)print('------------------------------------------------------')print("所有的频繁项为:\n {}".format(F))print('------------------------------------------------------')print("对应的支持度为:\n {}".format(sup_data))

4.实验结果


测试数据

表1 Apriori算法输入的数据 (最小支持度设置为2)

序号

数据项

替换

1

[A C D]

1 3 4

2

[B C E]

2 3 5

3

[A B C E]

1 2 3 5

4

[B E]

2 5


实验结果与分析

图 1.2 Apriori关联规则算法实验结果


算法优缺点

优点:

  1. Aprioi算法采用逐层搜索的迭代方法,算法简单易于实现。
  2. 数据采用水平组织方式
  3. 采用Apriori 优化方法
  4. 适合事务数据库的关联规则挖掘。
  5. 适合稀疏数据集:根据以往的研究,该算法只能适合稀疏数据集的关联规则挖掘,也就是频繁项目集的长度稍小的数据集。

缺点:

  1. 对数据库的扫描次数过多。
  2. Apion算法可能产生大量的候选项集。
  3. 在频繁项目集长度变大的情况下,运算时间显著增加。
  4. 采用唯一支持度,没有考虑各个属性重要程度的不同。
  5. 算法的适应面窄。

 其他实验(我是芒果酱点一个关注吧(σ′▽‵)′▽‵)σ)

  • k-Means聚类算法 HNUST【数据分析技术】(2024)-CSDN博客
  • PageRank Web页面分级算法 HNUST【数据分析技术】(2024)-CSDN博客
  • KNN分类算法 HNUST【数据分析技术】(2024)-CSDN博客
  • Apriori关联规则算法 HNUST【数据分析技术】(2024)-CSDN博客
http://www.dinnco.com/news/81009.html

相关文章:

  • iis管理器添加网站关键词推广效果
  • asp网站首页模板百度竞价推广账户
  • 广州小程序制作开发杭州seo靠谱
  • 北京律师网站建设免费下载百度
  • 深圳营销型网站制作公司网络运营怎么学
  • 网站设计制作发展趋势万网域名注册流程
  • 泉州网站建设咨询舆情监测软件
  • 做五金批发的适合在哪些网站营销广告网站
  • 网站配色绿色国内重大新闻10条
  • 宣传网站怎么做的适合口碑营销的产品
  • 手机上可以做网站吗网站seo哪里做的好
  • 怎么做网站文章伪原创百度快照是什么意思?
  • asp做网站和dw的区别群排名优化软件
  • 徐州百姓网招聘信息网东莞排名优化团队
  • 公司做网站都需要什么今天今日头条新闻
  • 专教做蛋糕的网站seo网站关键词排名软件
  • 网页升级紧急通知appseo网站怎么搭建
  • 做网站的常识推广
  • 免费的网站服务器山东潍坊疫情最新消息
  • 北京分类信息网福建优化seo
  • 建设工程八大员考试网站国内搜索引擎
  • php网站建设入门教程地推推广平台
  • 张家界网站建设公司网络推广员
  • wordpress网站加密码破解产品营销软文
  • zblog做单页网站舆情服务网站
  • wordpress响应式网站模板长春seo排名外包
  • 兰考县红庙关东村做网站的免费手机网站建站平台
  • 吉林省建设工程安管人员管理系统seo优化技巧有哪些
  • 做网站销售工资怎么样关键词检索怎么弄
  • 电商型网站是否是趋势徐州网站优化