当前位置: 首页 > news >正文

网站开发技术选择seo神器

网站开发技术选择,seo神器,营销型企业网站建设的基本原则是,做教师知识网站有哪些内容下面将详细介绍如何实现使用RBF(径向基函数)神经网络模拟二阶电机数学模型中的非线性干扰,以及使用WNN(小波神经网络)预测模型中的非线性函数来抵消迟滞影响的功能。我们将按照以下步骤进行: 步骤1&#x…

下面将详细介绍如何实现使用RBF(径向基函数)神经网络模拟二阶电机数学模型中的非线性干扰,以及使用WNN(小波神经网络)预测模型中的非线性函数来抵消迟滞影响的功能。我们将按照以下步骤进行:

步骤1:定义二阶电机数学模型

考虑一个带有迟滞影响的二阶电机数学模型,其一般形式可以表示为:
y ¨ ( t ) + a 1 y ˙ ( t ) + a 0 y ( t ) = u ( t ) + d ( t ) + h ( t ) \ddot{y}(t) + a_1\dot{y}(t) + a_0y(t) = u(t) + d(t) + h(t) y¨(t)+a1y˙(t)+a0y(t)=u(t)+d(t)+h(t)
其中, y ( t ) y(t) y(t) 是电机的输出, u ( t ) u(t) u(t) 是控制输入, d ( t ) d(t) d(t) 是非线性干扰, h ( t ) h(t) h(t) 是迟滞影响。

步骤2:RBF神经网络模拟非线性干扰

RBF神经网络是一种前馈神经网络,其输出可以表示为:
d ^ ( t ) = ∑ i = 1 N w i φ ( ∥ x ( t ) − c i ∥ ) \hat{d}(t) = \sum_{i=1}^{N} w_i\varphi(\left\lVert x(t) - c_i\right\rVert) d^(t)=i=1Nwiφ(x(t)ci)
其中, w i w_i wi 是权重, φ \varphi φ 是径向基函数(通常使用高斯函数), c i c_i ci 是中心, x ( t ) x(t) x(t) 是输入向量。

步骤3:WNN预测非线性函数

小波神经网络是一种结合了小波变换和神经网络的模型,用于预测模型中的非线性函数。

代码实现

import numpy as np
import matplotlib.pyplot as plt
from sklearn.neural_network import MLPRegressor
from pywt import wavedec# 定义二阶电机数学模型
def second_order_motor_model(y, u, d, h, a0, a1):y_dot = np.zeros(2)y_dot[0] = y[1]y_dot[1] = -a0 * y[0] - a1 * y[1] + u + d + hreturn y_dot# 定义RBF神经网络模拟非线性干扰
def rbf_network(x, centers, weights, sigma):N = len(centers)phi = np.zeros(N)for i in range(N):phi[i] = np.exp(-np.linalg.norm(x - centers[i])**2 / (2 * sigma**2))return np.dot(weights, phi)# 定义WNN预测非线性函数
def wnn_predict(x, model):# 这里简单使用MLPRegressor作为示例return model.predict([x])[0]# 模拟参数
T = 10  # 模拟时间
dt = 0.01  # 时间步长
t = np.arange(0, T, dt)
N = len(t)# 模型参数
a0 = 1.0
a1 = 0.5# 初始化状态
y = np.zeros((N, 2))
y[0] = [0, 0]# 控制输入
u = np.sin(2 * np.pi * 0.5 * t)# 非线性干扰和迟滞影响
d = 0.5 * np.sin(2 * np.pi * 1.5 * t)
h = 0.2 * np.sign(np.sin(2 * np.pi * 2 * t))# RBF神经网络参数
N_rbf = 10  # RBF神经元数量
centers = np.random.rand(N_rbf, 2)
weights = np.random.rand(N_rbf)
sigma = 0.1# WNN模型训练
X_wnn = np.column_stack((y[:, 0], y[:, 1], u))
y_wnn = -a0 * y[:, 0] - a1 * y[:, 1] + u + d + h
wnn_model = MLPRegressor(hidden_layer_sizes=(10,), activation='relu', max_iter=1000)
wnn_model.fit(X_wnn, y_wnn)# 模拟过程
for i in range(1, N):# 预测非线性干扰d_hat = rbf_network(y[i-1], centers, weights, sigma)# 预测非线性函数f_hat = wnn_predict(np.concatenate((y[i-1], [u[i-1]])), wnn_model)# 抵消影响u_compensated = u[i-1] - d_hat - f_hat# 更新状态y_dot = second_order_motor_model(y[i-1], u_compensated, d[i-1], h[i-1], a0, a1)y[i] = y[i-1] + y_dot * dt# 绘制结果
plt.figure(figsize=(12, 6))
plt.subplot(2, 1, 1)
plt.plot(t, y[:, 0], label='Output')
plt.xlabel('Time (s)')
plt.ylabel('Output')
plt.legend()plt.subplot(2, 1, 2)
plt.plot(t, u, label='Control Input')
plt.xlabel('Time (s)')
plt.ylabel('Control Input')
plt.legend()plt.tight_layout()
plt.show()

代码解释

  1. 二阶电机数学模型second_order_motor_model 函数定义了二阶电机的动力学方程。
  2. RBF神经网络rbf_network 函数实现了RBF神经网络的计算,用于模拟非线性干扰。
  3. WNN预测wnn_predict 函数使用 MLPRegressor 作为WNN的示例,用于预测非线性函数。
  4. 模拟过程:在模拟过程中,首先使用RBF神经网络预测非线性干扰,然后使用WNN预测非线性函数,最后将其从控制输入中抵消,更新系统状态。
  5. 结果绘制:使用 matplotlib 绘制系统的输出和控制输入。

注意事项

  • 代码中的RBF神经网络和WNN只是简单示例,实际应用中可能需要更复杂的网络结构和训练方法。
  • 非线性干扰和迟滞影响的具体形式可以根据实际情况进行调整。
http://www.dinnco.com/news/83070.html

相关文章:

  • 吉安市网站建设指数基金有哪些
  • 池州做网站公司草莓永久地域网名入2022
  • 资源网站如何做网络营销推广服务商
  • 深圳企业网站建设公司哪家好今天百度数据
  • 在线商标设计seo关键词排名优化专业公司
  • 国外网站的分析工具有哪些网站关键词排名优化系统
  • 邢台市天气预报15天seo教学
  • 情趣官方网站怎么做代理营销模式有哪些 新型
  • 网站建设需要服务器空间以品牌推广为目的的广告网络平台
  • 做服务型党员网站网络营销简介
  • 手机wap网站怎么做公司网站seo公司
  • 开发宁波seo网络推广优质团队
  • 银川专业做网站曹操seo博客
  • react做的网站网络营销是做什么的
  • 中国建设银网站网红营销
  • 网站实名淘特app推广代理
  • 注册公司流程和费用注册资金seo系统培训哪家好
  • 导购分享网站模板利尔化学股票最新消息
  • 盐城集团网站建设软件定制开发
  • 自己做网站怎么搜索会计培训班一般多少钱
  • 学校网站建设可行性分析北京seo网站开发
  • 垂直行业门户网站建设方案培训机构好还是学校好
  • 获取网页 代码 做网站b站推出的短视频app哪个好
  • 3d渲染网站建设怎么在百度发布自己的文章
  • 网站制作的评价指标中免费seo推广公司
  • 网站建设 客户评价正规的教育机构有哪些
  • wordpress首页导航设置百度快速优化排名软件
  • 网站维护工程师月薪多少怎样开网站
  • 东营今日新闻最新消息站长工具seo综合查询收费吗
  • 做酒的网站有哪些国家免费职业技能培训