当前位置: 首页 > news >正文

如何自己做淘宝网站优化网站界面的工具

如何自己做淘宝网站,优化网站界面的工具,网站建设怎样才能吸引顾客,电商设计的理解LeetCode-72. 编辑距离【字符串 动态规划】 题目描述:解题思路一:动规五部曲解题思路二:动态规划【版本二】解题思路三:0 题目描述: 给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最…

LeetCode-72. 编辑距离【字符串 动态规划】

  • 题目描述:
  • 解题思路一:动规五部曲
  • 解题思路二:动态规划【版本二】
  • 解题思路三:0

题目描述:

给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

插入一个字符
删除一个字符
替换一个字符

示例 1:

输入:word1 = “horse”, word2 = “ros”
输出:3
解释:
horse -> rorse (将 ‘h’ 替换为 ‘r’)
rorse -> rose (删除 ‘r’)
rose -> ros (删除 ‘e’)
示例 2:

输入:word1 = “intention”, word2 = “execution”
输出:5
解释:
intention -> inention (删除 ‘t’)
inention -> enention (将 ‘i’ 替换为 ‘e’)
enention -> exention (将 ‘n’ 替换为 ‘x’)
exention -> exection (将 ‘n’ 替换为 ‘c’)
exection -> execution (插入 ‘u’)

提示:

0 <= word1.length, word2.length <= 500
word1 和 word2 由小写英文字母组成

此题的解题思路与LeetCode-1143. 最长公共子序列【字符串 动态规划】非常一致!

解题思路一:动规五部曲

  1. 确定dp数组(dp table)以及下标的含义
    dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]。

有同学问了,为啥要表示下标i-1为结尾的字符串呢,为啥不表示下标i为结尾的字符串呢?

为什么这么定义我在 718. 最长重复子数组 (opens new window)中做了详细的讲解。

其实用i来表示也可以! 用i-1就是为了方便后面dp数组初始化的。

  1. 确定递推公式
    在确定递推公式的时候,首先要考虑清楚编辑的几种操作,整理如下:
if (word1[i - 1] == word2[j - 1])不操作
if (word1[i - 1] != word2[j - 1])增删换

也就是如上4种情况。

if (word1[i - 1] == word2[j - 1]) 那么说明不用任何编辑,dp[i][j] 就应该是 dp[i - 1][j - 1],即dp[i][j] = dp[i - 1][j - 1];

此时可能有同学有点不明白,为啥要即dp[i][j] = dp[i - 1][j - 1]呢?

那么就在回顾上面讲过的dp[i][j]的定义,word1[i - 1] 与 word2[j - 1]相等了,那么就不用编辑了,以下标i-2为结尾的字符串word1和以下标j-2为结尾的字符串word2的最近编辑距离dp[i - 1][j - 1]就是 dp[i][j]了。

在下面的讲解中,如果哪里看不懂,就回想一下dp[i][j]的定义,就明白了。

在整个动规的过程中,最为关键就是正确理解dp[i][j]的定义!

if (word1[i - 1] != word2[j - 1]),此时就需要编辑了,如何编辑呢?

操作一:word1删除一个元素,那么就是以下标i - 2为结尾的word1 与 j-1为结尾的word2的最近编辑距离 再加上一个操作。
即 dp[i][j] = dp[i - 1][j] + 1;

操作二:word2删除一个元素,那么就是以下标i - 1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 再加上一个操作。
即 dp[i][j] = dp[i][j - 1] + 1;

这里有同学发现了,怎么都是删除元素,添加元素去哪了。

word2添加一个元素,相当于word1删除一个元素,例如 word1 = “ad” ,word2 = “a”,word1删除元素’d’ 和 word2添加一个元素’d’,变成word1=“a”, word2=“ad”, 最终的操作数是一样! dp数组如下图所示意的:

            a                         a     d+-----+-----+             +-----+-----+-----+|  0  |  1  |             |  0  |  1  |  2  |+-----+-----+   ===>      +-----+-----+-----+a |  1  |  0  |           a |  1  |  0  |  1  |+-----+-----+             +-----+-----+-----+d |  2  |  1  |+-----+-----+

操作三:替换元素,word1替换word1[i - 1],使其与word2[j - 1]相同,此时不用增删加元素。

可以回顾一下,if (word1[i - 1] == word2[j - 1])的时候我们的操作 是 dp[i][j] = dp[i - 1][j - 1] 对吧。

那么只需要一次替换的操作,就可以让 word1[i - 1] 和 word2[j - 1] 相同。

所以 dp[i][j] = dp[i - 1][j - 1] + 1;

综上,当 if (word1[i - 1] != word2[j - 1]) 时取最小的,即:dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;

递归公式代码如下:

if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1];
}
else {dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}
  1. dp数组如何初始化
    再回顾一下dp[i][j]的定义:

dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]。

那么dp[i][0] 和 dp[0][j] 表示什么呢?

dp[i][0] :以下标i-1为结尾的字符串word1,和空字符串word2,最近编辑距离为dp[i][0]。

那么dp[i][0]就应该是i,对word1里的元素全部做删除操作,即:dp[i][0] = i;

同理dp[0][j] = j;

  1. 确定遍历顺序
    从如下四个递推公式:

dp[i][j] = dp[i - 1][j - 1]
dp[i][j] = dp[i - 1][j - 1] + 1
dp[i][j] = dp[i][j - 1] + 1
dp[i][j] = dp[i - 1][j] + 1
可以看出dp[i][j]是依赖左方,上方和左上方元素的,如图:
在这里插入图片描述
所以在dp矩阵中一定是从左到右从上到下去遍历。

  1. 举例推导dp数组
    以示例1为例,输入:word1 = “horse”, word2 = "ros"为例,dp矩阵状态图如下:
    在这里插入图片描述
class Solution:def minDistance(self, word1: str, word2: str) -> int:dp = [[0] * (len(word2)+1) for _ in range(len(word1)+1)]for i in range(len(word1)+1):dp[i][0] = ifor j in range(len(word2)+1):dp[0][j] = jfor i in range(1, len(word1)+1):for j in range(1, len(word2)+1):if word1[i-1] == word2[j-1]:dp[i][j] = dp[i-1][j-1]else:dp[i][j] = min(dp[i-1][j-1], dp[i-1][j], dp[i][j-1]) + 1return dp[-1][-1]

时间复杂度:O(nm)
空间复杂度:O(nm)

解题思路二:动态规划【版本二】

class Solution:def minDistance(self, word1: str, word2: str) -> int:m, n = len(word1), len(word2)dp = [[0] * (n+1) for _ in range(m+1)]for i in range(m+1):dp[i][0] = ifor j in range(n+1):dp[0][j] = jfor i in range(1, m+1):for j in range(1, n+1):if word1[i-1] == word2[j-1]:dp[i][j] = dp[i-1][j-1]else:dp[i][j] = min(dp[i-1][j], dp[i-1][j-1], dp[i][j-1]) + 1return dp[-1][-1]

时间复杂度:O(nm)
空间复杂度:O(nm)

解题思路三:0


时间复杂度:O(n)
空间复杂度:O(n)

http://www.dinnco.com/news/84769.html

相关文章:

  • 织梦做企业网站教程公众号免费推广平台
  • 网站定制 div css 手工电脑培训学校在哪里
  • 黄冈网站推广下载2023年最新新闻简短摘抄
  • 商城网站 运营全网营销图片
  • 外贸网站代码高佣金app软件推广平台
  • 新乡网站建设设计线上宣传渠道有哪些
  • 做网站最省钱实时热搜
  • 其他公司做的网站系统没授权能用吗免费的个人主页网页制作网站
  • 英国有哪些做折扣的网站建设网站的步骤
  • 什么是网站的主页站长之家ip查询工具
  • 专做韩国代购的网站百度云盘登录
  • 网站推广推广可以免费领取会员的软件
  • 卧龙区网站建设价格5151app是交友软件么
  • 如何做自己的网站或者论坛网络推广服务商
  • 网站建设的技术亮点优化的定义
  • 做网站被骗五千多网站为什么要做seo
  • sns网站需求抖音矩阵排名软件seo
  • 做外贸网站维护费是多少中国搜索引擎有哪些
  • 南宁国贸网站建设win7优化大师免安装版
  • 牛商网做的网站如何百度关键词搜索工具
  • 在哪里个网站找专业做ps的人东莞网站公司
  • wordpress saharanseo引擎优化外包公司
  • 网站域名如何续费百度下载安装免费
  • 上海有色金属门户网站佳木斯seo
  • 蓬安网站建设短视频seo询盘获客系统
  • 如何做网站内部优化seo外链建设的方法
  • 微商网站如何做推广方案谷歌下载官网
  • 哪些网站可以做微课今日微博热搜榜前十名
  • 建设自己网站教程线上推广策略
  • 怎么做网站广告卖钱百度网络营销