当前位置: 首页 > news >正文

衡水网站建设怎么做游戏推广员如何推广引流

衡水网站建设怎么做,游戏推广员如何推广引流,沧州网站建设,厦门seo推广目录 简单介绍 题目 1. 上帝造题的七分钟 2 2.SUM and REPLACE 3. And RMQ 总结 简单介绍 题目 1. 上帝造题的七分钟 2 链接:https://www.luogu.com.cn/problem/P4145 维护两种操作 1.区间开根号(下取整) 2.区间和询问 显然无法通过懒标记来计算区间开根号…

目录

简单介绍

 题目

1. 上帝造题的七分钟 2 

2.SUM and REPLACE

3. And RMQ

总结 

简单介绍

 题目

1. 上帝造题的七分钟 2 

链接:https://www.luogu.com.cn/problem/P4145

 维护两种操作

1.区间开根号(下取整)

2.区间和询问

显然无法通过懒标记来计算区间开根号后的值,其由叶子结点本身的值决定。容易发现当一个数连续进行开根号操作会在很少的次数变为1,且值不再改变,1即为零势能点。因此我们可以维护区间max。一旦区间修改时发现此区间的max<=1时,我们不需要再次修改,直接return即可,否则向下递归修改。

Code:

#include<bits/stdc++.h>
using namespace std;
#define PII pair<int,int>
#define endl "\n"
#define int long long
const int N=1e5+10;
struct segment_tree {int a[N];struct node {int l,r;int mx,sum;}tr[N<<2];void build(int u,int l,int r) {tr[u].l=l,tr[u].r=r;if(l==r) {tr[u].mx=tr[u].sum=a[l];return ;}int mid=(l+r)>>1;build(u<<1,l,mid);build(u<<1|1,mid+1,r);pushup(u);} void modify(int u,int l,int r) {if(tr[u].mx<=1) return ;if(tr[u].l==tr[u].r) {tr[u].mx=sqrt(tr[u].mx);tr[u].sum=tr[u].mx;return ;}int mid=(tr[u].l+tr[u].r)>>1;if(l<=mid) modify(u<<1,l,r);if(r>mid) modify(u<<1|1,l,r);pushup(u);} int query(int u,int l,int r) {if(tr[u].l>=l&&tr[u].r<=r) {return tr[u].sum;}int mid=(tr[u].l+tr[u].r)>>1;int res=0;if(l<=mid) res+=query(u<<1,l,r);if(r>mid) res+=query(u<<1|1,l,r);return res;}void pushup(int u) {tr[u].sum=tr[u<<1].sum+tr[u<<1|1].sum;tr[u].mx=max(tr[u<<1].mx,tr[u<<1|1].mx);}
}ST;
signed main() {ios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);int n,m;cin>>n;for(int i=1;i<=n;i++) cin>>ST.a[i];ST.build(1,1,n);cin>>m;while(m--) {int op,l,r;cin>>op>>l>>r;if(l>r) swap(l,r);if(op==0) ST.modify(1,l,r);else cout<<ST.query(1,l,r)<<endl;     }
}

2.SUM and REPLACE

链接:https://codeforces.com/contest/920/problem/F

定义f(x)为x因子的数量

维护三种操作

1.区间修改x=f(x)  

2.区间和查询

手动模拟f(x)可以发现,进行f(x)操作,数值单调不增,且x<=2时,其值不在改变,因此同上题一样维护区间最大值即可。f(x)可以O(nlogn)时间预处理出来。

#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<vector>
#include<queue>
#include<map>
#include<set>
using namespace std;
#define PII pair<int,int>
#define endl "\n"
#define int long long
const int N=3e5+10,M=1e6+10;
int d[M+1];
struct segment_tree {int a[N];struct node {int l,r;int mx,sum;}tr[N<<2];void build(int u,int l,int r) {tr[u].l=l,tr[u].r=r;if(l==r) {tr[u].mx=tr[u].sum=a[l];return ;}int mid=(l+r)>>1;build(u<<1,l,mid);build(u<<1|1,mid+1,r);pushup(u);} void modify(int u,int l,int r) {if(tr[u].mx<=2) return ;if(tr[u].l==tr[u].r) {tr[u].mx=d[tr[u].mx];tr[u].sum=tr[u].mx;return ;}int mid=(tr[u].l+tr[u].r)>>1;if(l<=mid) modify(u<<1,l,r);if(r>mid) modify(u<<1|1,l,r);pushup(u);} int query(int u,int l,int r) {if(tr[u].l>=l&&tr[u].r<=r) {return tr[u].sum;}int mid=(tr[u].l+tr[u].r)>>1;int res=0;if(l<=mid) res+=query(u<<1,l,r);if(r>mid) res+=query(u<<1|1,l,r);return res;}void pushup(int u) {tr[u].sum=tr[u<<1].sum+tr[u<<1|1].sum;tr[u].mx=max(tr[u<<1].mx,tr[u<<1|1].mx);}
};
signed main() {ios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);for(int i=1;i<=M;i++) {  //预处理for(int j=i;j<=M;j+=i) {d[j]++;}}int n,m;cin>>n>>m;segment_tree ST;for(int i=1;i<=n;i++) cin>>ST.a[i];ST.build(1,1,n);while(m--) {int op,l,r;cin>>op>>l>>r;if(op==1) ST.modify(1,l,r);else cout<<ST.query(1,l,r)<<endl;}
}

3. And RMQ

链接:

维护三个操作

1.区间按位与x

2.区间最大值

3.单点修改

这题零势能点藏得较深,我们考虑将x二进制展开,发现在x的二进制位为零的位置,区间所有数的二进制位也为零,则操作可以忽略。维护区间或   orsum=a_{l}|a_{l+2}|a_{l+2}|a_{r-1}|...|a_{r}  

orsum & x =orsum,则直接return 

Code:

#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<vector>
#include<queue>
#include<map>
#include<set>
using namespace std;
#define PII pair<int,int>
#define endl "\n"
const int N=4e5+10;
struct segment_tree {int a[N];struct node {int l,r;int mx,sum;}tr[N<<2];void build(int u,int l,int r) {tr[u].l=l,tr[u].r=r;if(l==r) {tr[u].mx=tr[u].sum=a[l];return ;}int mid=(l+r)>>1;build(u<<1,l,mid);build(u<<1|1,mid+1,r);pushup(u);} void modify(int u,int l,int r,int x) {if((tr[u].sum&x)==tr[u].sum) return ;if(tr[u].l==tr[u].r) {tr[u].mx=tr[u].mx&x;tr[u].sum=tr[u].mx;return ;}int mid=(tr[u].l+tr[u].r)>>1;if(l<=mid) modify(u<<1,l,r,x);if(r>mid) modify(u<<1|1,l,r,x);pushup(u);} int query(int u,int l,int r) {if(tr[u].l>=l&&tr[u].r<=r) {return tr[u].mx;}int mid=(tr[u].l+tr[u].r)>>1;int res=0;if(l<=mid) res=max(res,query(u<<1,l,r));if(r>mid) res=max(res,query(u<<1|1,l,r));return res;}void update(int u,int k,int x) {if(tr[u].l==tr[u].r) {tr[u].mx=tr[u].sum=x;return ;}int mid=(tr[u].l+tr[u].r)>>1;if(k<=mid) update(u<<1,k,x);else update(u<<1|1,k,x);pushup(u);}void pushup(int u) {tr[u].sum=tr[u<<1].sum|tr[u<<1|1].sum;tr[u].mx=max(tr[u<<1].mx,tr[u<<1|1].mx);}
}ST;
int main() {ios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);int n,m;cin>>n>>m;for(int i=1;i<=n;i++) cin>>ST.a[i];ST.build(1,1,n);while(m--) {int l,r,x;string op;cin>>op;if(op=="AND")  {cin>>l>>r>>x;ST.modify(1,l,r,x);}else if(op=="UPD") {cin>>l>>x;ST.update(1,l,x);}else {cin>>l>>r;cout<<ST.query(1,l,r)<<endl;}}
}

总结 

1.对于区间修改操作,修改操作会使得值在趋向零势能点严格单调减少,在变为零势能点后不在变化。需要维护一个值来界定是否到达零势能

2.且题目不能出现其他非单调的区间修改操作,如区间加,区间乘等。如果有其他修改操作,可以通过构造形如 update1 ,update 2,update 1,update 2 的数据破坏单调性,从而使操作1复杂度变为暴力修改的O(nlogn)

http://www.dinnco.com/news/85759.html

相关文章:

  • 怎么做点图片链接网站怎么制作网页链接
  • 企业所得税怎么收的关键词优化价格
  • 兰州专业做网站的公司有哪些无限制搜索引擎排名
  • 青岛搭建公司上海百度seo公司
  • 如何自制自己的网站如何线上推广自己产品
  • 电子商务网站建设培训课件seo引擎优化教程
  • 礼品网站制作网站seo优化总结
  • 学校网站的建设网络事件营销
  • 商标制作logo设计西安百度关键词优化
  • 用J2ee怎么做视频网站自己有产品怎么网络销售
  • 中国人做的比较好的shopify网站加快百度收录的方法
  • 付费推广平台有哪些安卓优化大师清理
  • 水产网站模板微营销推广软件
  • 青县做网站seo外链专员
  • 上海专业网站建设平台seo公司推广宣传
  • 劳务公司找工程网十堰seo
  • 做网站要用到哪些技术免费b站软件下载
  • 深圳做网站的seo免费软件
  • 做中学学中做网站app软件推广平台
  • 企业网站备案资料疫情排行榜最新消息
  • 有没有做鸭的网站工作室招聘许昌seo公司
  • wordpress自建站邮箱如何做市场推广方案
  • 东莞网站建设制作关键词优化如何
  • 个人放款可以做网站企业营销策划书
  • 猪八戒托管赏金做网站网址信息查询
  • 顺德网站制作有哪些公司推广普通话ppt课件
  • 网站图片上传却不显示淘宝seo优化排名
  • 网站上做相关链接一键关键词优化
  • 岳阳建设商城网站公司可以发布推广引流的悬赏平台
  • 品牌网站建设怎么做广点通广告平台