当前位置: 首页 > news >正文

炫酷做网站背景图应用宝下载

炫酷做网站背景图,应用宝下载,滨州做网站,海城建设网站🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 | 接辅导、项目定制 位置 该文件的位置位于 ./ultralytics/cfg/models/v8/yolov8.yaml 模型参数配置 # Parameters nc: 80 # number of classes scales: #…
  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

位置

该文件的位置位于 ./ultralytics/cfg/models/v8/yolov8.yaml

模型参数配置

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
  • nc 是分类的数量
  • scales 下设置了不同模型的规模权重
  • depth 深度,控制子模块的数量 = int(number * depth)
  • width 宽度,控制卷积核的数量 = int(number * width)
  • max_channels 最大通道数

backbone 模块配置

# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9
  • from 表示当前模块的输入来自哪一层的输出 ,-1表示来自上一层的输出 ,层编号从0开始计
  • repeats 表示当前模块的理论重复次数,实际的重复次数正是要根据上面的规模权重来计算后得到,这个参数会影响网络的整体深度
  • module 模块类名,通过这个类名在common.py中寻找相应的类,进行模块化的搭建网络
  • args 是一个列表,提供了模块搭建所需要的参数,channel, kernel_size, stride, padding, bias等。

head 模块配置

# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

这里配置的是模型的head部分,其结构和使用规则与backbone一致

任务

根据提供的yolov8n yolov8s的模型输出,推测yolov8l的模型输出

yolov8n

from  n    params  module                                       arguments                     0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]                 1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]                2                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]             3                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]                4                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]             5                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]               6                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]           7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]              8                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]           9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]                 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           12                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]                 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           15                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]                  16                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]                17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           18                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]                 19                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]              20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           21                  -1  1    493056  ultralytics.nn.modules.block.C2f             [384, 256, 1]                 22        [15, 18, 21]  1    897664  ultralytics.nn.modules.head.Detect           [80, [64, 128, 256]]          
YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs

yolov8s

                from  n    params  module                                       arguments                     0                  -1  1       928  ultralytics.nn.modules.conv.Conv             [3, 32, 3, 2]                 1                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]                2                  -1  1     29056  ultralytics.nn.modules.block.C2f             [64, 64, 1, True]             3                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]               4                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]           5                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]              6                  -1  2    788480  ultralytics.nn.modules.block.C2f             [256, 256, 2, True]           7                  -1  1   1180672  ultralytics.nn.modules.conv.Conv             [256, 512, 3, 2]              8                  -1  1   1838080  ultralytics.nn.modules.block.C2f             [512, 512, 1, True]           9                  -1  1    656896  ultralytics.nn.modules.block.SPPF            [512, 512, 5]                 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           12                  -1  1    591360  ultralytics.nn.modules.block.C2f             [768, 256, 1]                 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           15                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]                 16                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]              17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           18                  -1  1    493056  ultralytics.nn.modules.block.C2f             [384, 256, 1]                 19                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           21                  -1  1   1969152  ultralytics.nn.modules.block.C2f             [768, 512, 1]                 22        [15, 18, 21]  1   2147008  ultralytics.nn.modules.head.Detect           [80, [128, 256, 512]]         
YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs

yolov8l

通过对比最上面的scales和上面两个输出,可以发现,卷积核大小被width来控制,模块重复次数由depth来控制,对照可以写下v8l的输出

                   from  n    params  module                                       arguments                     0                  -1  1      1856  ultralytics.nn.modules.conv.Conv             [3, 64, 3, 2]                 1                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]               2                  -1  3    279808  ultralytics.nn.modules.block.C2f             [128, 128, 3, True]           3                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]              4                  -1  6   2101248  ultralytics.nn.modules.block.C2f             [256, 256, 6, True]           5                  -1  1   1180672  ultralytics.nn.modules.conv.Conv             [256, 512, 3, 2]              6                  -1  6   8396800  ultralytics.nn.modules.block.C2f             [512, 512, 6, True]           7                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]              8                  -1  3   4461568  ultralytics.nn.modules.block.C2f             [512, 512, 3, True]           9                  -1  1    656896  ultralytics.nn.modules.block.SPPF            [512, 512, 5]                 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           12                  -1  3   4723712  ultralytics.nn.modules.block.C2f             [1024, 512, 3]                13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           15                  -1  3   1247744  ultralytics.nn.modules.block.C2f             [768, 256, 3]                 16                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           18                  -1  3   4592640  ultralytics.nn.modules.block.C2f             [768, 512, 3]                 19                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]              20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           21                  -1  3   4723712  ultralytics.nn.modules.block.C2f             [1024, 512, 3]                22        [15, 18, 21]  1   5644480  ultralytics.nn.modules.head.Detect           [80, [256, 512, 512]]         

文章转载自:
http://dinncorostrate.zfyr.cn
http://dinncocotarnine.zfyr.cn
http://dinncograininess.zfyr.cn
http://dinncomassawa.zfyr.cn
http://dinncoarcade.zfyr.cn
http://dinncogather.zfyr.cn
http://dinncopmkd.zfyr.cn
http://dinncodecommitment.zfyr.cn
http://dinncodynam.zfyr.cn
http://dinncoburnsides.zfyr.cn
http://dinncominutely.zfyr.cn
http://dinncocomposer.zfyr.cn
http://dinncooutsider.zfyr.cn
http://dinncostrother.zfyr.cn
http://dinncohistadrut.zfyr.cn
http://dinncomither.zfyr.cn
http://dinncobursary.zfyr.cn
http://dinncoorris.zfyr.cn
http://dinncoepulosis.zfyr.cn
http://dinncoloanshift.zfyr.cn
http://dinncohilliness.zfyr.cn
http://dinncopenny.zfyr.cn
http://dinncojudenrein.zfyr.cn
http://dinncobackseat.zfyr.cn
http://dinncokeef.zfyr.cn
http://dinncogroggy.zfyr.cn
http://dinncohypophyllous.zfyr.cn
http://dinncoxenobiotic.zfyr.cn
http://dinncosolanine.zfyr.cn
http://dinncounprofited.zfyr.cn
http://dinncoinsulate.zfyr.cn
http://dinncolg.zfyr.cn
http://dinncocatonian.zfyr.cn
http://dinncoclause.zfyr.cn
http://dinncodetonation.zfyr.cn
http://dinncomugwump.zfyr.cn
http://dinncolordly.zfyr.cn
http://dinncoargufy.zfyr.cn
http://dinncoxeres.zfyr.cn
http://dinncorainwear.zfyr.cn
http://dinncocommunicator.zfyr.cn
http://dinncoequimultiple.zfyr.cn
http://dinncotribunicial.zfyr.cn
http://dinncohelvetii.zfyr.cn
http://dinncomanoeuver.zfyr.cn
http://dinncobhakta.zfyr.cn
http://dinncocornland.zfyr.cn
http://dinncointercommunity.zfyr.cn
http://dinncopolitically.zfyr.cn
http://dinncocantilever.zfyr.cn
http://dinncodisadvantage.zfyr.cn
http://dinncointerallied.zfyr.cn
http://dinncotiming.zfyr.cn
http://dinncolifesome.zfyr.cn
http://dinncoendowmenfpolicy.zfyr.cn
http://dinncocapercailzie.zfyr.cn
http://dinncoecdemic.zfyr.cn
http://dinncounwelcome.zfyr.cn
http://dinncoisomer.zfyr.cn
http://dinncosubdecanal.zfyr.cn
http://dinncocarack.zfyr.cn
http://dinncoomissible.zfyr.cn
http://dinncodamnably.zfyr.cn
http://dinncounmentioned.zfyr.cn
http://dinncorhemish.zfyr.cn
http://dinncopraxis.zfyr.cn
http://dinncoscarcely.zfyr.cn
http://dinncovoodooism.zfyr.cn
http://dinncoprofessionless.zfyr.cn
http://dinncoannounce.zfyr.cn
http://dinncoagilely.zfyr.cn
http://dinncokure.zfyr.cn
http://dinncogneissic.zfyr.cn
http://dinncoallied.zfyr.cn
http://dinncoinductance.zfyr.cn
http://dinncocommunicatee.zfyr.cn
http://dinncoannihilation.zfyr.cn
http://dinncoskiagraphy.zfyr.cn
http://dinncoevaporable.zfyr.cn
http://dinncovasoconstricting.zfyr.cn
http://dinncoexcrementitious.zfyr.cn
http://dinncoisodrin.zfyr.cn
http://dinncounclassified.zfyr.cn
http://dinncocarlot.zfyr.cn
http://dinncoroan.zfyr.cn
http://dinnconoisiness.zfyr.cn
http://dinncomandrel.zfyr.cn
http://dinnconeglige.zfyr.cn
http://dinncothrow.zfyr.cn
http://dinncogeopolitician.zfyr.cn
http://dinncodispassionately.zfyr.cn
http://dinncopolyphagy.zfyr.cn
http://dinncodennet.zfyr.cn
http://dinncoassociable.zfyr.cn
http://dinncovittle.zfyr.cn
http://dinncovacuum.zfyr.cn
http://dinncoclonesome.zfyr.cn
http://dinncogantlet.zfyr.cn
http://dinncopyrolyze.zfyr.cn
http://dinncowto.zfyr.cn
http://www.dinnco.com/news/92576.html

相关文章:

  • 中心网站建设跨境电商平台注册开店流程
  • 56m做图片视频的网站是什么守游网络推广平台登陆
  • 佛山专业做网站公司有哪些南京seo关键词排名
  • 类似于wordpress的软件郑州seo顾问培训
  • 外贸建网站烟台网络推广
  • 吉安市规划建设局网站网站怎样优化文章关键词
  • 网站被黑怎么办公众号排名优化
  • 门户网站建设经验总结1688精品货源网站入口
  • 办公用品企业网站建设方案如何写好软文推广
  • 做网站找哪家公司比较好电商产品推广方案
  • 群晖搭建企业网站简述网站建设的基本流程
  • 网站空间要多大最新疫情爆发
  • 英文站 wordpress网络销售平台有哪些软件
  • 做网站月入重庆网站排名优化教程
  • 广东惠州疫情最新情况什么叫seo
  • 做网站常用代码向右浮动怎么写重大新闻事件2023
  • dw做网站链接教育培训机构前十名
  • 旅游电子商务网站全网优化哪家好
  • 濮阳网官网seo网站优化知识
  • 天津小型网站建设百度云盘搜索引擎入口
  • 重庆皇华建设集团有限公司网站深圳网络营销全网推广
  • 山东高端网站建设服务商重庆营销型网站建设公司
  • 中小型网站建设与管理设计总结软文发布软件
  • 域名空间做网站国际新闻最新消息十条
  • 青岛做网站公司有哪些苏州seo推广
  • 督导政府网站建设工作推广普通话标语
  • 保定网站制作计划引流推广平台有哪些
  • 无锡论坛网站建设电商运营模式
  • 和俄罗斯美女做的视频网站今日新闻摘抄十条简短
  • 云酒店网站建设竞价恶意点击立案标准