当前位置: 首页 > news >正文

小卖部做网站一键生成网站

小卖部做网站,一键生成网站,重庆短视频行业,有哪些网站做外贸的核心: 开放词汇的实时的yolo检测器。重参数化的视觉语言聚合路径模块Re-parameterizable VisionLanguage Path Aggregation Network (RepVL-PAN)实时核心:轻量化的检测器离线词汇推理过程重参数化 方法 预训练方案:将实例注释重新定义为区域…

核心:

在这里插入图片描述

  • 开放词汇的实时的yolo检测器。
  • 重参数化的视觉语言聚合路径模块Re-parameterizable VisionLanguage Path Aggregation Network (RepVL-PAN)
  • 实时核心:轻量化的检测器+离线词汇推理过程重参数化

方法

在这里插入图片描述
预训练方案:将实例注释重新定义为区域-文本对,通过大规模检测、定位和图像-文本数据进行预训练。
模型架构:YOLO-World由YOLO检测器、文本编码器和RepVL-PAN组成,利用跨模态融合增强文本和图像表示

基础结构

  • Yolo detectorV8, darknet+PAN+head
  • Text Encoder. CLIP+n-gram
  • Text Contrastive Head.两个3x3回归bbox框以及object embedding。object embedding与文本embedding计算相似度求对比loss
  • Inference with Offline Vocabulary.prompt提前确定好,提前计算好embedding。再重参数化到PAN模块。
    在这里插入图片描述

3.3. Re-parameterizable Vision-Language PAN

在这里插入图片描述
RepVL-PAN由多尺度图像特征{C3, C4, C5}形成,利用了自顶向下和自底向上的路径来加强图像特征和文本特征之间的交互。

  • Text-guided CSPLayer(文本->图像).文本embedding经过max-sigmoid加权到neck特征后与原始特征concat。
  • Image-Pooling Attention.(图像->文本)。多层图像特征和文本attention再加到文本embedding中

结果

在这里插入图片描述
又快又好!V100上达到了52FPS!!!
在这里插入图片描述

核心代码:

class RepConvMaxSigmoidAttnBlock(BaseModule):"""Max Sigmoid attention block."""def __init__(self,in_channels: int,out_channels: int,embed_channels: int,guide_channels: int,kernel_size: int = 3,padding: int = 1,num_heads: int = 1,use_depthwise: bool = False,with_scale: bool = False,conv_cfg: OptConfigType = None,norm_cfg: ConfigType = dict(type='BN',momentum=0.03,eps=0.001),init_cfg: OptMultiConfig = None,use_einsum: bool = True) -> None:super().__init__(init_cfg=init_cfg)conv = DepthwiseSeparableConvModule if use_depthwise else ConvModuleassert (out_channels % num_heads == 0 andembed_channels % num_heads == 0), \'out_channels and embed_channels should be divisible by num_heads.'self.num_heads = num_headsself.head_channels = out_channels // num_headsself.use_einsum = use_einsumself.embed_conv = ConvModule(in_channels,embed_channels,1,conv_cfg=conv_cfg,norm_cfg=norm_cfg,act_cfg=None) if embed_channels != in_channels else Noneself.bias = nn.Parameter(torch.zeros(num_heads))self.num_heads = num_headsself.split_channels = embed_channels // num_headsself.guide_convs = nn.ModuleList(nn.Conv2d(self.split_channels, guide_channels, 1, bias=False)for _ in range(num_heads))self.project_conv = conv(in_channels,out_channels,kernel_size,stride=1,padding=padding,conv_cfg=conv_cfg,norm_cfg=norm_cfg,act_cfg=None)def forward(self, x: Tensor, txt_feats: Tensor = None) -> Tensor:"""Forward process."""B, C, H, W = x.shapeembed = self.embed_conv(x) if self.embed_conv is not None else xembed = list(embed.split(self.split_channels, 1))# Bx(MxN)xHxW (H*c=C, H: heads)attn_weight = torch.cat([conv(x) for conv, x in zip(self.guide_convs, embed)], dim=1)# BxMxNxHxWattn_weight = attn_weight.view(B, self.num_heads, -1, H, W)# attn_weight = torch.stack(#     [conv(x) for conv, x in zip(self.guide_convs, embed)])# BxMxNxHxW -> BxMxHxWattn_weight = attn_weight.max(dim=2)[0] / (self.head_channels**0.5)attn_weight = (attn_weight + self.bias.view(1, -1, 1, 1)).sigmoid()# .transpose(0, 1)# BxMx1xHxWattn_weight = attn_weight[:, :, None]x = self.project_conv(x)# BxHxCxHxWx = x.view(B, self.num_heads, -1, H, W)x = x * attn_weightx = x.view(B, -1, H, W)return x

ImagePoolingAttentionModule

class ImagePoolingAttentionModule(nn.Module):def __init__(self,image_channels: List[int],text_channels: int,embed_channels: int,with_scale: bool = False,num_feats: int = 3,num_heads: int = 8,pool_size: int = 3,use_einsum: bool = True):super().__init__()self.text_channels = text_channelsself.embed_channels = embed_channelsself.num_heads = num_headsself.num_feats = num_featsself.head_channels = embed_channels // num_headsself.pool_size = pool_sizeself.use_einsum = use_einsumif with_scale:self.scale = nn.Parameter(torch.tensor([0.]), requires_grad=True)else:self.scale = 1.0self.projections = nn.ModuleList([ConvModule(in_channels, embed_channels, 1, act_cfg=None)for in_channels in image_channels])self.query = nn.Sequential(nn.LayerNorm(text_channels),Linear(text_channels, embed_channels))self.key = nn.Sequential(nn.LayerNorm(embed_channels),Linear(embed_channels, embed_channels))self.value = nn.Sequential(nn.LayerNorm(embed_channels),Linear(embed_channels, embed_channels))self.proj = Linear(embed_channels, text_channels)self.image_pools = nn.ModuleList([nn.AdaptiveMaxPool2d((pool_size, pool_size))for _ in range(num_feats)])def forward(self, text_features, image_features):B = image_features[0].shape[0]assert len(image_features) == self.num_featsnum_patches = self.pool_size**2mlvl_image_features = [pool(proj(x)).view(B, -1, num_patches)for (x, proj, pool) in zip(image_features, self.projections, self.image_pools)]mlvl_image_features = torch.cat(mlvl_image_features,dim=-1).transpose(1, 2)q = self.query(text_features)k = self.key(mlvl_image_features)v = self.value(mlvl_image_features)q = q.reshape(B, -1, self.num_heads, self.head_channels)k = k.reshape(B, -1, self.num_heads, self.head_channels)v = v.reshape(B, -1, self.num_heads, self.head_channels)if self.use_einsum:attn_weight = torch.einsum('bnmc,bkmc->bmnk', q, k)else:q = q.permute(0, 2, 1, 3)k = k.permute(0, 2, 3, 1)attn_weight = torch.matmul(q, k)attn_weight = attn_weight / (self.head_channels**0.5)attn_weight = F.softmax(attn_weight, dim=-1)if self.use_einsum:x = torch.einsum('bmnk,bkmc->bnmc', attn_weight, v)else:v = v.permute(0, 2, 1, 3)x = torch.matmul(attn_weight, v)x = x.permute(0, 2, 1, 3)x = self.proj(x.reshape(B, -1, self.embed_channels))return x * self.scale + text_features

参考:https://github.com/AILab-CVC/YOLO-World/blob/master/yolo_world/models/layers/yolo_bricks.py

http://www.dinnco.com/news/9597.html

相关文章:

  • 做酒店网站百度推广公司哪家比较靠谱
  • 网站定制设计网页价格多少钱网站优化seo是什么意思
  • wordpress获取子菜单seo排名计费系统
  • 武汉眼前一亮科技有限公司青岛seo整站优化招商电话
  • 张家港做网站费用内容企业推广
  • 深圳网站快速排名优化b站视频推广网站动漫
  • 怎样建设一个公司网站南京市网站
  • wordpress内网使用深圳网络seo推广
  • 不用ftp做网站seo内容优化心得
  • 网站前台界面模板下载网易搜索引擎入口
  • 济南网站建设 泉诺网站推广平台
  • 网站备案需要准备哪些资料主要推广手段免费
  • 做网站一定要有营业执照吗百度搜索排名查询
  • php网站开发教程网seo外链代发
  • 可以做动图的视频网站产品推广介绍怎么写
  • 广告位seo关键词排名优化的方法
  • 建立网站站建设可以吗百度网盘客户端
  • 家用电脑网站建设优搜云seo
  • 怎么自己在微信上做网站上海不限关键词优化
  • 网站丢了怎么办理百度手机导航官方新版
  • 凡客网络科技seo快速排名首页
  • 网站备案经验2021年新闻摘抄
  • 定制网站前准备杭州网络优化公司排名
  • 新疆建设网官网网站深圳seo优化排名公司
  • 想做找人做网站t和p在一起怎么做网站
  • 微信管理标签seo知识分享
  • 企业网站无线端怎么做微博推广方式
  • 全球著名科技网站关键词竞价排名
  • 个人网站制作步骤微信app小程序开发
  • 无为网站设计长沙网站优化方法