当前位置: 首页 > news >正文

详情页设计模板网站汽车网络营销推广方案

详情页设计模板网站,汽车网络营销推广方案,亚洲成品1688进入,如何做旅游攻略网站简单产生复杂,混沌孕育秩序 0. 引言 a. 分形 fractal 【也叫碎形】 分形是一种具有自相似性和复杂结构的几何图形。在分形结构中,无论放大多少次,局部的结构特征都与整体结构相似。这种特性在自然界中广泛存在,比如树木枝干、山…

简单产生复杂,混沌孕育秩序

0. 引言

a. 分形 fractal

【也叫碎形】
分形是一种具有自相似性和复杂结构的几何图形。在分形结构中,无论放大多少次,局部的结构特征都与整体结构相似。这种特性在自然界中广泛存在,比如树木枝干、山脉轮廓、云的形状等。

一些常见的分形:
🔸 规则分形:理想的数学模型,自相似性是明显的。包括但不限于:科赫曲线,科赫雪花,谢尔宾斯基三角形,谢尔品斯基地毯,康托尔集,皮亚诺曲线等。
🔹 无规分形:在物理学或自然界存在的分形,自相似是近似的或统计的。包括但不限于:雪花、海岸线、海绵、叶脉和毛细血管,茱利亚集,曼德尔布罗特集合等。

b. 混沌 chaos

混沌系统是指具有高度敏感性和不确定性的动态系统,其行为在长期预测中极为复杂。混沌系统通常表现出对初始条件的敏感性(蝴蝶效应),即微小的变化可以导致完全不同的结果,而且其行为往往看似随机,但实际上是由确定的规则产生的。

一些常见的混沌系统:
洛伦兹吸引子,罗西尔系统,Henon映射,杜福尔系统,物流映射,摆的混沌,干涉系统,螺旋混沌等。

c. 分形与混沌

分形强调几何图形和自相似性的特性,而混沌系统则侧重于动态行为和时间演化的性质。

分形具有缩放对称性,在标度变换下仍具有分形整体上相似的复杂性和不规则性(即无穷层次的自相似性),在某些情况下,分形可以是混沌系统的一种表现形式,出现在其分析中,但并非所有分形都是混沌系统。
有些分形(例如:洛伦兹吸引子,曼德尔布罗特集合)展示了混沌特性,而其他一些分形(例如:康托尔集)则缺乏动态的混沌行为。

d. 分维 D

零维的点、一维的线、二维的面、三维的立体、四维的时空,然而空间维数也可以是分数,不是整数。

分维(fractional dimension) D = l o g M l o g n D=\frac{logM}{logn} D=lognlogM

图形由M个相等的部分组成,其在先行尺度上是原图形的 1 n \frac{1}{n} n1 ,则 M × ( 1 n ) D = 1 M×{(\frac{1}{n})}^D=1 M×(n1)D=1 .

比如:

谢尔品斯基地毯
D = l g 3 l g 2 ≈ 1.585 \begin{align} D & = \frac{lg3}{lg2} ≈ 1.585\\ \end{align} D=lg2lg31.585

科赫曲线 D = l g 4 l g 3 ≈ 1.262 \begin{align} D & = \frac{lg4}{lg3} ≈ 1.262\\ \end{align} D=lg3lg41.262

二维扩散置限凝聚
D = 1.66 ∼ 1.71 \begin{align} D & = 1.66 ∼ 1.71\\ \end{align} D=1.661.71

1. 常见的分形

a. 蕨菜叶分形 fern

f ( x , y ) = [ a b c d ] [ x y ] + [ e f ] = [ a x + b y + e c x + d y + f ] f(x,y) = \left[ \begin{matrix} a & b\\ c & d\\ \end{matrix} \right] \left[ \begin{matrix} x\\ y\\ \end{matrix} \right]+\left[ \begin{matrix} e\\ f\\ \end{matrix} \right]= \left[ \begin{matrix} ax+by+e\\ cx+dy+f\\ \end{matrix} \right] f(x,y)=[acbd][xy]+[ef]=[ax+by+ecx+dy+f]

ω \omega ωabcdefp产生的部分
ƒ10000.16000.01
ƒ20.850.04−0.040.8501.600.84连续变小的小叶子
ƒ30.20−0.260.230.2201.600.07最大的左侧叶
ƒ4−0.150.280.260.2400.440.07最大的右侧叶

a-f 系数;p 概率因子
所有变换的概率总和等于1,以保证在随机选择时,只有一项变换会被选中。

最知名的蕨菜叶分形是Barnsley Fern.

Barnsley fern

Barnsley fern

茎:
f 1 ( x , y ) = [ 0 0 0 0.16 ] [ x y ] + [ 0 0 ] = [ 0 0.16 y ] f_1(x,y) = \left[ \begin{matrix} 0 & 0\\ 0 & 0.16\\ \end{matrix} \right] \left[ \begin{matrix} x\\ y\\ \end{matrix} \right]+\left[ \begin{matrix} 0\\ 0\\ \end{matrix} \right]= \left[ \begin{matrix} 0\\ 0.16y\\ \end{matrix} \right] f1(x,y)=[0000.16][xy]+[00]=[00.16y]

连续变小的小叶子:
f 2 ( x , y ) = [ 0.85 0.04 − 0.04 0.85 ] [ x y ] + [ 0 1.6 ] = [ 0.85 x + 0.04 y − 0.04 x + 0.85 y + 1.6 ] f_2(x,y) = \left[ \begin{matrix} 0.85 & 0.04\\ -0.04 & 0.85\\ \end{matrix} \right] \left[ \begin{matrix} x\\ y\\ \end{matrix} \right]+\left[ \begin{matrix} 0\\ 1.6\\ \end{matrix} \right]= \left[ \begin{matrix} 0.85 x + 0.04y\\ -0.04x + 0.85y + 1.6\\ \end{matrix} \right] f2(x,y)=[0.850.040.040.85][xy]+[01.6]=[0.85x+0.04y0.04x+0.85y+1.6]

最大的左侧叶:
f 3 ( x , y ) = [ 0.2 − 0.26 0.23 0.22 ] [ x y ] + [ 0 1.6 ] = [ 0.2 x − 0.26 y 0.23 x + 0.22 y + 1.6 ] f_3(x,y) = \left[ \begin{matrix} 0.2 & -0.26\\ 0.23 & 0.22\\ \end{matrix} \right] \left[ \begin{matrix} x\\ y\\ \end{matrix} \right]+\left[ \begin{matrix} 0\\ 1.6\\ \end{matrix} \right]= \left[ \begin{matrix} 0.2x - 0.26y\\ 0.23x + 0.22y + 1.6\\ \end{matrix} \right] f3(x,y)=[0.20.230.260.22][xy]+[01.6]=[0.2x0.26y0.23x+0.22y+1.6]

最大的右侧叶:
f 4 ( x , y ) = [ − 0.15 0.28 0.26 0.24 ] [ x y ] + [ 0 0.44 ] = [ − 0.15 x + 0.28 y 0.26 x + 0.24 y + 0.44 ] f_4(x,y) = \left[ \begin{matrix} -0.15 & 0.28\\ 0.26 & 0.24\\ \end{matrix} \right] \left[ \begin{matrix} x\\ y\\ \end{matrix} \right]+\left[ \begin{matrix} 0\\ 0.44\\ \end{matrix} \right]= \left[ \begin{matrix} -0.15x + 0.28y\\ 0.26x + 0.24y + 0.44\\ \end{matrix} \right] f4(x,y)=[0.150.260.280.24][xy]+[00.44]=[0.15x+0.28y0.26x+0.24y+0.44]

通过这些参数,可以创建不同的蕨类品种,比如:变化为Thelypteridaceae fern.
Thelypteridaceae fern

Thelypteridaceae fern

ω \omega ωabcdefp产生的部分
ƒ10000.250-0.40.02
ƒ20.950.005−0.0050.93-0.0020.50.84连续变小的小叶子
ƒ30.035−0.20.160.04-0.090.020.07最大的左侧叶
ƒ4−0.040.20.160.040.0830.120.07最大的右侧叶

在这里插入图片描述


改变茎的朝向:

# 旋转点以使茎朝左
# 这里使用旋转矩阵将点旋转 180 度(在 x 轴上翻转)
points[:, 0] = -points[:, 0]

Barnsley fern

Barnsley fern

变色
在这里插入图片描述
在这里插入图片描述

b. 科赫曲线 KochCurve

在这里插入图片描述turtle绘制科赫曲线:

import turtle
import threadingpens = [] # 画笔列表
iterations_list = [1, 2, 3, 4, 5, 6] # 迭代次数列表
y_positions = [-250, -150, -50, 50, 150, 250] # 各个画笔的起始y坐标def koch_curve(t, size, iterations):# 科赫曲线if iterations == 0:t.forward(size)else:for angle in [0, 60, -120, 60]:t.left(angle)koch_curve(t, size / 3, iterations - 1)def draw_koch_curve(t, iterations):# 绘制科赫曲线t.pendown()koch_curve(t, 300, iterations)t.hideturtle()def setup_turtles():# 设置多个画笔for i, iterations in enumerate(iterations_list):t = turtle.Turtle()t.speed(0)  # 设置绘制速度为最快t.penup()t.goto(-150, y_positions[i])  # 设置起始位置,x 坐标固定,y 坐标变化pens.append((t, iterations))def draw_curve_in_thread(t, iterations):# 在新线程中绘制科赫曲线draw_koch_curve(t, iterations)# 创建一个 turtle 窗口
screen = turtle.Screen()
screen.title("Multiple Koch Curves")setup_turtles() # 设置画笔# 创建并启动线程
threads = []
def draw_all_curves():for t, iterations in pens:thread = threading.Thread(target=draw_curve_in_thread, args=(t, iterations))threads.append(thread)thread.start()# 等待所有线程完成
for thread in threads:thread.join()draw_all_curves()turtle.done() # 保持窗口开启,直到用户关闭

RuntimeError: main thread is not in main loop

threads = []for t, iterations in pens:thread = threading.Thread(target=draw_curve_in_thread, args=(t, iterations))threads.append(thread)thread.start()# 等待所有线程完成
for thread in threads:thread.join()turtle.done() # 保持窗口开启,直到用户关闭

解决办法

在这里插入图片描述

c. 科赫雪花 KochSnowflake

在这里插入图片描述可以由科赫曲线旋转得到。

import turtledef koch_curve(size, iterations):# 递归绘制科赫曲线if iterations == 0:turtle.fd(size)else:for angle in [0, 60, -120, 60]:turtle.left(angle)koch_curve(size / 3, iterations - 1)# 设置 turtle 窗口
turtle.setup(800, 600)  # 增加高度以适应更大的布局
turtle.speed(0)  # 设置为最快速度
turtle.pensize(1)# 绘制多个不同迭代次数的科赫曲线
iterations_list = [0, 1, 2, 3, 4]  # 定义要绘制的迭代次数
size = 100  # 每条曲线的长度,可以调整以适应布局
horizontal_spacing = 110  # 各个曲线间的垂直间距# 循环绘制
for i, iterations in enumerate(iterations_list):turtle.penup()turtle.goto( i*horizontal_spacing -300, 250 -size / 2)  # 适当的垂直间距turtle.setheading(0)  # 确保每条曲线都从水平位置开始绘制turtle.pendown()koch_curve(size, iterations)  # 绘制科赫曲线# 旋转并绘制相同曲线两次,形成完整的三角形for _ in range(2):turtle.right(120)koch_curve(size, iterations)turtle.hideturtle() # 隐藏 turtle
turtle.done() 

上色
在这里插入图片描述
在这里插入图片描述


文章转载自:
http://dinncotriad.tqpr.cn
http://dinncoscherzo.tqpr.cn
http://dinncoboner.tqpr.cn
http://dinncotaxonomist.tqpr.cn
http://dinncotolerationism.tqpr.cn
http://dinncoken.tqpr.cn
http://dinncoathymic.tqpr.cn
http://dinncomiasmal.tqpr.cn
http://dinncopsittacine.tqpr.cn
http://dinncounderjawed.tqpr.cn
http://dinncoindividualize.tqpr.cn
http://dinncodetonable.tqpr.cn
http://dinncopyroninophilic.tqpr.cn
http://dinncosporopollenin.tqpr.cn
http://dinncodedicatory.tqpr.cn
http://dinncorestrictee.tqpr.cn
http://dinncoroselike.tqpr.cn
http://dinncoreliable.tqpr.cn
http://dinncosleepily.tqpr.cn
http://dinncoincan.tqpr.cn
http://dinncopocketful.tqpr.cn
http://dinncobigeminal.tqpr.cn
http://dinncofructan.tqpr.cn
http://dinncoantiquer.tqpr.cn
http://dinncohydrocarbon.tqpr.cn
http://dinncodemultiplexer.tqpr.cn
http://dinncoantianxiety.tqpr.cn
http://dinncoplatypodia.tqpr.cn
http://dinncomutilate.tqpr.cn
http://dinncoaddlebrained.tqpr.cn
http://dinncoandron.tqpr.cn
http://dinncochrysophyte.tqpr.cn
http://dinncoamoco.tqpr.cn
http://dinncodexterity.tqpr.cn
http://dinncocounterirritate.tqpr.cn
http://dinncopainkiller.tqpr.cn
http://dinncororqual.tqpr.cn
http://dinncochopboat.tqpr.cn
http://dinncotenantry.tqpr.cn
http://dinncoosteosclerosis.tqpr.cn
http://dinncobetain.tqpr.cn
http://dinncolycee.tqpr.cn
http://dinncobenzopyrene.tqpr.cn
http://dinncotraceability.tqpr.cn
http://dinncoturret.tqpr.cn
http://dinncominimize.tqpr.cn
http://dinncocentreless.tqpr.cn
http://dinncodestitution.tqpr.cn
http://dinncosheikhdom.tqpr.cn
http://dinncovertex.tqpr.cn
http://dinncomatriclan.tqpr.cn
http://dinncoataghan.tqpr.cn
http://dinncosherris.tqpr.cn
http://dinncoabsurd.tqpr.cn
http://dinncosadiron.tqpr.cn
http://dinncoarchdeaconate.tqpr.cn
http://dinncoconcubinal.tqpr.cn
http://dinncoteem.tqpr.cn
http://dinncohepatopexy.tqpr.cn
http://dinncoknub.tqpr.cn
http://dinncooxygenize.tqpr.cn
http://dinncomemsahib.tqpr.cn
http://dinncosublineate.tqpr.cn
http://dinncohispidulous.tqpr.cn
http://dinncohydrosoma.tqpr.cn
http://dinncopontic.tqpr.cn
http://dinncoencyclic.tqpr.cn
http://dinncohardboot.tqpr.cn
http://dinncolimpwort.tqpr.cn
http://dinncowoodhouse.tqpr.cn
http://dinncowhiplash.tqpr.cn
http://dinncoautocollimation.tqpr.cn
http://dinncoriband.tqpr.cn
http://dinncosothis.tqpr.cn
http://dinnconephrotic.tqpr.cn
http://dinncofroebelian.tqpr.cn
http://dinncoalgonkin.tqpr.cn
http://dinncocompile.tqpr.cn
http://dinncoalular.tqpr.cn
http://dinncochrissie.tqpr.cn
http://dinncoduumvir.tqpr.cn
http://dinncovertigines.tqpr.cn
http://dinncolectorate.tqpr.cn
http://dinncoarabdom.tqpr.cn
http://dinncopopster.tqpr.cn
http://dinncountoward.tqpr.cn
http://dinncogyroidal.tqpr.cn
http://dinncoaweigh.tqpr.cn
http://dinncofloriculturist.tqpr.cn
http://dinncopander.tqpr.cn
http://dinncoshakeout.tqpr.cn
http://dinncoprocathedral.tqpr.cn
http://dinncoashore.tqpr.cn
http://dinncoforsooth.tqpr.cn
http://dinncopackstaff.tqpr.cn
http://dinncokilnman.tqpr.cn
http://dinncogeepound.tqpr.cn
http://dinncocelestite.tqpr.cn
http://dinncominstrel.tqpr.cn
http://dinncodefragment.tqpr.cn
http://www.dinnco.com/news/97874.html

相关文章:

  • 新疆乌鲁木齐医院网站建设网络建站优化科技
  • 网站开发和软件软文代写代发
  • 商机网项目长春seo关键词排名
  • 网络营销课程总结1000字seo运营
  • 不用开源做网站抖音seo优化怎么做
  • 网站问题有哪些内容千锋教育官网
  • 网站开发现在怎么样百度账号人工申诉
  • 大良品牌网站建设成都互联网公司排名
  • 简单的网页百度排名优化
  • 泰州市建设工程质量监督站网站今日热搜
  • 免费造网站如何自己弄一个网站
  • 商家在网站做淘宝客会给佣金吗google chrome
  • 网站怎么做背景图片海南百度推广总代理商
  • 整形美容网站源码衡阳百度推广公司
  • 苏州住房城乡建设部网站seo助理
  • 南京在线网站制作前端开发培训机构推荐
  • 专门做t恤的网站分享几个x站好用的关键词
  • 天津市建设工程信息网站没有限制的国外搜索引擎
  • 公司做网站b2b吗百度客服24小时人工电话
  • 运城做网站价格seo手机排名软件
  • 做个人网站到哪里做培训方案怎么做
  • 科技建站网站源码网站快照优化公司
  • 龙岩做网站的地方有哪些11月将现新冠感染高峰
  • 江宁网站建设价位朋友圈的广告推广怎么弄
  • 建站软件可以不通过网络建设吗合肥今天的最新消息
  • 做网站css代码上海百度推广排名优化
  • 专业旅游培训网站建设网络服务器是指什么
  • 哪个网站做的简历最好热搜词工具
  • 做推广效果哪个网站好2021年最为成功的营销案例
  • 广州外贸营销型网站建设公司我是seo关键词