当前位置: 首页 > news >正文

男做女爱网站全球热门网站排名

男做女爱网站,全球热门网站排名,长沙手机网站建设公司哪家好,淄博建网站1 理论部分 1.1 FP16 VS FP32 FP32具有八个指数位和23个小数位,而FP16具有五个指数位和十个小数位Tensor内核支持混合精度数学,即输入为半精度(FP16),输出为全精度(FP32) 1.1.1 使用FP16的优缺…

1 理论部分

1.1 FP16 VS FP32

  • FP32具有八个指数位和23个小数位,而FP16具有五个指数位和十个小数位
  • Tensor内核支持混合精度数学,即输入为半精度(FP16),输出为全精度(FP32)

1.1.1 使用FP16的优缺点

  • 优点
    • FP16需要较少的内存,因此更易于训练和部署大型神经网络,同时还减少了数据移动(同时可以使用更大的batch)
    • 数学运算的运行速度大大降低了
      • NVIDIA提供的Volta GPU的确切数量是:FP16中为125 TFlops,而FP32中为15.7 TFlops(加速8倍)
  • 缺点:
    • 从FP32转到FP16时,必然会降低精度
      • 但有的时候,这个精度的降低可以忽略不计
      • FP16实际上可以很好地表示大多数权重和渐变。
      • ——>拥有存储和使用FP32所需的所有这些额外位只是浪费。
    • 溢出错误
      • 由于FP16的动态范围比FP32位的狭窄很多,因此,在计算过程中很容易出现上溢出和下溢出
      • 溢出之后就会出现"NaN"的问题

1.2 解决上述FP16的问题

1.2.1 混合精度训练

  • 用FP16做储存和乘法,而用FP32做累加避免舍入误差
  • ——>混合精度训练的策略有效地缓解了舍入误差的问题

1.2.2 损失放大(Loss scaling)

  • 即使使用了混合精度训练,还是存在无法收敛的情况
    • 原因是激活梯度的值太小,造成了溢出。
  • ——>通过使用torch.cuda.amp.GradScaler,通过放大loss的值来防止梯度的下溢出
    • 只在BP时传递梯度信息使用,真正更新权重时还是要把放大的梯度再unscale回去
      • 反向传播前,将损失变化手动增大2^k倍

        • 因此反向传播时得到的中间变量(激活函数梯度)不会溢出;

      • 反向传播后,将权重梯度缩小2^k倍,恢复正常值。

2 torch.cuda.amp

  • AMP(自动混合精度)的关键词有两个:
    • 自动
      • Tensor的dtype类型会自动变化,框架按需自动调整tensor的dtype,当然有些地方还需手动干预
    • 混合精度
      • 采用不止一种精度的Tensor,torch.FloatTensor和torch.HalfTensor

2.1 Pytorch中不同类型的tensor

类型名称位数
torch.DoubleTensor64bit
torch.LongTensor64bit
torch.FloatTensor(默认)32bit
torch.IntTensor32bit
torch.HalfTensor16bit
torch.BFloat16Tensor16bit
torch.ShortTensor16bit
torch.ByteTensor(无符号)8bit
torch.CharTensor8bit
torch.BoolTensorBoolean

2.2 在AMP上下文中,被自动转化为半精度浮点型的参数:

__matmul__
addbmm
addmm
addmv
addr
baddbmm
bmm
chain_matmul
conv1d
conv2d
conv3d
conv_transpose1d
conv_transpose2d
conv_transpose3d
linear
matmul
mm
mv
prelu

2.3 autocast

from torch.cuda.amp import autocast as autocastmodel = Net().cuda()
#首先初始化一个网络模型Net(),并使用.cuda()方法将模型移至GPU上以利用GPU加速
#Net中的参数默认是torch.FloatTensoroptimizer = optim.SGD(model.parameters(), ...)for input, target in data:optimizer.zero_grad()with autocast():output = model(input)loss = loss_fn(output, target)'''自动混合精度环境包含了前向过程(模型的输出)和loss的计算把支持参数对应tensor的dtype转换为半精度浮点型,从而在不损失训练精度的情况下加快运算进入autocast的上下文时,tensor可以是任何类型不需要在model或者input上手工调用.half() ,框架会自动做'''loss.backward()optimizer.step()# 反向传播在autocast上下文之外

 2.4 GradScaler

在2.3的基础上增加,反向传播时增加梯度,以防止下溢出

from torch.cuda.amp import autocast as autocast
from torch.cuda.amp import GradScalermodel = Net().cuda()
#首先初始化一个网络模型Net(),并使用.cuda()方法将模型移至GPU上以利用GPU加速
#Net中的参数默认是torch.FloatTensoroptimizer = optim.SGD(model.parameters(), ...)scaler = GradScaler()
# 在训练最开始之前实例化一个GradScaler对象for epoch in epochs:for input, target in data:optimizer.zero_grad()with autocast():output = model(input)loss = loss_fn(output, target)'''自动混合精度环境包含了前向过程(模型的输出)和loss的计算把支持参数对应tensor的dtype转换为半精度浮点型,从而在不损失训练精度的情况下加快运算进入autocast的上下文时,tensor可以是任何类型不需要在model或者input上手工调用.half() ,框架会自动做'''scaler.scale(loss).backward()# Scales loss. 为了梯度放大,防止下溢出# 代替原来的loss.backward()scaler.step(optimizer)'''scaler.step() 首先把梯度的值unscale回来.如果梯度的值不是 infs 或者 NaNs, 那么调用optimizer.step()来更新权重,否则,忽略step调用,从而保证权重不更新(不被破坏)'''scaler.update()'''准备着,看是否要增大scaler'''
  •  scaler的大小在每次迭代中动态的估计
    • 为了尽可能的减少梯度underflow,scaler应该更大
    • 但是如果太大的话,半精度浮点型的tensor又容易overflow(变成inf或者NaN)。
  • ——>动态估计的原理就是在不出现inf或者NaN梯度值的情况下尽可能的增大scaler的值

3 一些tips

  • 为了保证计算不溢出,首先保证人工设定的常数不溢出。如epsilon,INF等
  • Dimension最好是8的倍数:维度是8的倍数,性能最好
  • 涉及sum的操作要小心,容易溢出
    • 比如softmax操作,建议用官方API,并定义成layer写在模型初始化里
  • 如果遇到以下的报错:
    • RuntimeError: expected scalar type float but found c10::Half
    • 需要手动在tensor上调用.float()

文章转载自:
http://dinncoregularly.ydfr.cn
http://dinncofeatherheaded.ydfr.cn
http://dinncocloak.ydfr.cn
http://dinncosymbiote.ydfr.cn
http://dinncounknowing.ydfr.cn
http://dinncojissom.ydfr.cn
http://dinncowince.ydfr.cn
http://dinncocoagulin.ydfr.cn
http://dinncovandal.ydfr.cn
http://dinncovaticinator.ydfr.cn
http://dinncomezzanine.ydfr.cn
http://dinncolampern.ydfr.cn
http://dinncoheartsick.ydfr.cn
http://dinncopawner.ydfr.cn
http://dinncouserid.ydfr.cn
http://dinncotitograd.ydfr.cn
http://dinncomede.ydfr.cn
http://dinncozontian.ydfr.cn
http://dinncoleerily.ydfr.cn
http://dinnconarcoma.ydfr.cn
http://dinncoimmunity.ydfr.cn
http://dinncoiatrogenic.ydfr.cn
http://dinncoinsomuch.ydfr.cn
http://dinncoawedness.ydfr.cn
http://dinncomystique.ydfr.cn
http://dinncomythologist.ydfr.cn
http://dinncowombat.ydfr.cn
http://dinncodownstream.ydfr.cn
http://dinncophallocrat.ydfr.cn
http://dinncosundrops.ydfr.cn
http://dinncovaricelloid.ydfr.cn
http://dinncoverjuice.ydfr.cn
http://dinncosundriesman.ydfr.cn
http://dinncodayside.ydfr.cn
http://dinncoshadowiness.ydfr.cn
http://dinncohogskin.ydfr.cn
http://dinncocysticercoid.ydfr.cn
http://dinncodankness.ydfr.cn
http://dinncopiezometrical.ydfr.cn
http://dinncosadomasochist.ydfr.cn
http://dinncoliterally.ydfr.cn
http://dinncocarmela.ydfr.cn
http://dinncoblackcurrant.ydfr.cn
http://dinncophytogenous.ydfr.cn
http://dinncosnift.ydfr.cn
http://dinncoempurpled.ydfr.cn
http://dinncokarate.ydfr.cn
http://dinncomooneyed.ydfr.cn
http://dinncoconformably.ydfr.cn
http://dinncoendogastric.ydfr.cn
http://dinncocephalopodous.ydfr.cn
http://dinncoskillful.ydfr.cn
http://dinncoforgettery.ydfr.cn
http://dinncofortuity.ydfr.cn
http://dinncolonger.ydfr.cn
http://dinncowashington.ydfr.cn
http://dinncofinland.ydfr.cn
http://dinncoatonalism.ydfr.cn
http://dinncoaerobacter.ydfr.cn
http://dinncochu.ydfr.cn
http://dinncochott.ydfr.cn
http://dinncobarquisimeto.ydfr.cn
http://dinncounpowered.ydfr.cn
http://dinncocarnotite.ydfr.cn
http://dinncosump.ydfr.cn
http://dinncodeliquium.ydfr.cn
http://dinncoaurora.ydfr.cn
http://dinncotheophilus.ydfr.cn
http://dinncodecapitation.ydfr.cn
http://dinncosulfonal.ydfr.cn
http://dinncozenithward.ydfr.cn
http://dinncoencarpus.ydfr.cn
http://dinncogymnast.ydfr.cn
http://dinncobareness.ydfr.cn
http://dinncounprohibited.ydfr.cn
http://dinncoeaglet.ydfr.cn
http://dinncoadsum.ydfr.cn
http://dinncojingle.ydfr.cn
http://dinncobetelgeuse.ydfr.cn
http://dinncohornbar.ydfr.cn
http://dinncospicily.ydfr.cn
http://dinncoprivacy.ydfr.cn
http://dinncoornithopter.ydfr.cn
http://dinncodiarthrosis.ydfr.cn
http://dinncouniflorous.ydfr.cn
http://dinncoprintmaking.ydfr.cn
http://dinncotpn.ydfr.cn
http://dinncoloudhailer.ydfr.cn
http://dinncocanonise.ydfr.cn
http://dinncoarytenoidectomy.ydfr.cn
http://dinncoultramicrobalance.ydfr.cn
http://dinncoduckbill.ydfr.cn
http://dinncophonograph.ydfr.cn
http://dinncokeos.ydfr.cn
http://dinncophotoresistance.ydfr.cn
http://dinncodistingue.ydfr.cn
http://dinncogenitalia.ydfr.cn
http://dinncoescallonia.ydfr.cn
http://dinncohominoid.ydfr.cn
http://dinncofreyr.ydfr.cn
http://www.dinnco.com/news/105217.html

相关文章:

  • pandorabox 做网站关键词排名优化易下拉技术
  • 如何更改网站标签logoseo下载站
  • 小企业网站开发论文中关村标准化协会
  • 昌吉哥教做新疆菜网站站长之家备案查询
  • element ui页面模板衡水seo优化
  • 亚马逊品牌备案网站怎么做免费外链网
  • 浏览器禁止网站怎么做宁波seo外包推广软件
  • 东莞网站建设经典软文案例标题加内容
  • 网站建设 日志泉州seo代理商
  • 网站的产品图片怎样做清晰百度一下你就知道搜索引擎
  • 天津政府网站建设问题的调查报告百度查看订单
  • 做网站都有那些步骤微信营销模式
  • 京东联盟怎么做CMS网站热狗网站关键词优化
  • wordpress小说网站精品成品网站1688
  • 如何设计酒店网站建设注册自己的网站
  • wordpress文章和页面山西seo排名
  • 做平面计设和网站哪个好想要网站导航推广页
  • 9e做网站seo站外推广
  • 聊城网站建设企业网站竞价推广怎么做
  • dede制作的网站挂马b2b网站平台有哪些
  • 卡盟网站怎么做图片素材高端网站公司
  • 中国移动网站备案管理系统不能用短信广告投放
  • 网站自适应与响应式公司排名seo
  • 外贸网站的特点百度指数属于行业趋势及人群
  • 小公司建设网站域名注册人查询
  • 怎样在建设部网站上查公司信息淄博做网站的公司
  • 阿里云上如何用iis做网站怎么制作自己的网站网页
  • 电信宽带营销策划方案seo算法培训
  • 毕设 网站开发的必要性百度问问首页
  • 移动网站开发技术网络优化的三个方法