当前位置: 首页 > news >正文

最便宜做网站的方法重庆seo优化效果好

最便宜做网站的方法,重庆seo优化效果好,宁波 小程序开发公司,在线播放电影网站源码一、 1、卷积核超参数选择困难,自动找到卷积的最佳组合。 2、1x1卷积核,不同通道的信息融合。使用1x1卷积核虽然参数量增加了,但是能够显著的降低计算量(operations) 3、Inception Moudel由4个分支组成,要分清哪些是在Init里定义…

一、

1、卷积核超参数选择困难,自动找到卷积的最佳组合。

2、1x1卷积核,不同通道的信息融合。使用1x1卷积核虽然参数量增加了,但是能够显著的降低计算量(operations)

3、Inception Moudel由4个分支组成,要分清哪些是在Init里定义,哪些是在forward里调用。4个分支在dim=1(channels)上进行concatenate。24+16+24+24 = 88
4、最大池化层只改变宽、高;padding为增加输入的宽、高,使卷积后宽、高不变

二、

import torch
import torch.nn as nn
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim# prepare datasetbatch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) # 归一化,均值和方差train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)# design model using class
class InceptionA(nn.Module):def __init__(self, in_channels):super(InceptionA, self).__init__()self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)self.branch5x5_1 = nn.Conv2d(in_channels, 16, kernel_size=1)self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)def forward(self, x):branch1x1 = self.branch1x1(x)branch5x5 = self.branch5x5_1(x)branch5x5 = self.branch5x5_2(branch5x5)branch3x3 = self.branch3x3_1(x)branch3x3 = self.branch3x3_2(branch3x3)branch3x3 = self.branch3x3_3(branch3x3)branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)branch_pool = self.branch_pool(branch_pool)outputs = [branch1x1, branch5x5, branch3x3, branch_pool]return torch.cat(outputs, dim=1) # b,c,w,h  c对应的是dim=1class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(1, 10, kernel_size=5)self.conv2 = nn.Conv2d(88, 20, kernel_size=5) # 88 = 24x3 + 16self.incep1 = InceptionA(in_channels=10) # 与conv1 中的10对应self.incep2 = InceptionA(in_channels=20) # 与conv2 中的20对应self.mp = nn.MaxPool2d(2)self.fc = nn.Linear(1408, 10) def forward(self, x):in_size = x.size(0)x = F.relu(self.mp(self.conv1(x)))x = self.incep1(x)x = F.relu(self.mp(self.conv2(x)))x = self.incep2(x)x = x.view(in_size, -1)x = self.fc(x)return xmodel = Net()# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)# training cycle forward, backward, updatedef train(epoch):running_loss = 0.0for batch_idx, data in enumerate(train_loader, 0):inputs, target = dataoptimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, target)loss.backward()optimizer.step()running_loss += loss.item()if batch_idx % 300 == 299:print('[%d, %5d] loss: %.3f' % (epoch+1, batch_idx+1, running_loss/300))running_loss = 0.0def test():correct = 0total = 0with torch.no_grad():for data in test_loader:images, labels = dataoutputs = model(images)_, predicted = torch.max(outputs.data, dim=1)total += labels.size(0)correct += (predicted == labels).sum().item()print('accuracy on test set: %d %% ' % (100*correct/total))if __name__ == '__main__':for epoch in range(10):train(epoch)test()

1、先使用类对Inception Moudel进行封装

2、先是1个卷积层(conv,maxpooling,relu),然后inceptionA模块(输出的channels是24+16+24+24=88),接下来又是一个卷积层(conv,mp,relu),然后inceptionA模块,最后一个全连接层(fc)。

3、1408这个数据可以通过x = x.view(in_size, -1)后调用x.shape得到。

三、

1、梯度消失问题,用ResNet解决

2、跳连接,H(x) = F(x) + x,张量维度必须一样,加完后再激活。不要做pooling,张量的维度会发生变化。

代码说明:

先是1个卷积层(conv,maxpooling,relu),然后ResidualBlock模块,接下来又是一个卷积层(conv,mp,relu),然后esidualBlock模块模块,最后一个全连接层(fc)。

import torch
import torch.nn as nn
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim# prepare datasetbatch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) # 归一化,均值和方差train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)# design model using class
class ResidualBlock(nn.Module):def __init__(self, channels):super(ResidualBlock, self).__init__()self.channels = channelsself.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)def forward(self, x):y = F.relu(self.conv1(x))y = self.conv2(y)return F.relu(x + y)class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(1, 16, kernel_size=5)self.conv2 = nn.Conv2d(16, 32, kernel_size=5) # 88 = 24x3 + 16self.rblock1 = ResidualBlock(16)self.rblock2 = ResidualBlock(32)self.mp = nn.MaxPool2d(2)self.fc = nn.Linear(512, 10) # 暂时不知道1408咋能自动出来的def forward(self, x):in_size = x.size(0)x = self.mp(F.relu(self.conv1(x)))x = self.rblock1(x)x = self.mp(F.relu(self.conv2(x)))x = self.rblock2(x)x = x.view(in_size, -1)x = self.fc(x)return xmodel = Net()# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)# training cycle forward, backward, updatedef train(epoch):running_loss = 0.0for batch_idx, data in enumerate(train_loader, 0):inputs, target = dataoptimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, target)loss.backward()optimizer.step()running_loss += loss.item()if batch_idx % 300 == 299:print('[%d, %5d] loss: %.3f' % (epoch+1, batch_idx+1, running_loss/300))running_loss = 0.0def test():correct = 0total = 0with torch.no_grad():for data in test_loader:images, labels = dataoutputs = model(images)_, predicted = torch.max(outputs.data, dim=1)total += labels.size(0)correct += (predicted == labels).sum().item()print('accuracy on test set: %d %% ' % (100*correct/total))if __name__ == '__main__':for epoch in range(10):train(epoch)test()

运行结果:


文章转载自:
http://dinncoinfallibly.bpmz.cn
http://dinncosemiangle.bpmz.cn
http://dinncoprattle.bpmz.cn
http://dinncogamey.bpmz.cn
http://dinncobondmaid.bpmz.cn
http://dinncorelievable.bpmz.cn
http://dinncosubviral.bpmz.cn
http://dinncopallasite.bpmz.cn
http://dinncopredicative.bpmz.cn
http://dinncochrysoidine.bpmz.cn
http://dinnconeaples.bpmz.cn
http://dinncomystically.bpmz.cn
http://dinncoantithetic.bpmz.cn
http://dinncoodds.bpmz.cn
http://dinncoawane.bpmz.cn
http://dinncoelectronegative.bpmz.cn
http://dinncoshooting.bpmz.cn
http://dinncosynarthrodial.bpmz.cn
http://dinncoexacerbate.bpmz.cn
http://dinnconuthatch.bpmz.cn
http://dinncobackroom.bpmz.cn
http://dinncotrichiniasis.bpmz.cn
http://dinncobiodynamical.bpmz.cn
http://dinncobibliotherapy.bpmz.cn
http://dinncoreplaceable.bpmz.cn
http://dinncohairtrigger.bpmz.cn
http://dinncosemiannually.bpmz.cn
http://dinncotreacherousness.bpmz.cn
http://dinncoprohibition.bpmz.cn
http://dinncordb.bpmz.cn
http://dinncoanvil.bpmz.cn
http://dinnconumismatic.bpmz.cn
http://dinncoturbulence.bpmz.cn
http://dinncodeferral.bpmz.cn
http://dinncodisputability.bpmz.cn
http://dinncowaste.bpmz.cn
http://dinncodisentitle.bpmz.cn
http://dinncoed.bpmz.cn
http://dinncominnie.bpmz.cn
http://dinncoerinyes.bpmz.cn
http://dinncopoesy.bpmz.cn
http://dinncothus.bpmz.cn
http://dinncocurricle.bpmz.cn
http://dinncosquadsman.bpmz.cn
http://dinncodowny.bpmz.cn
http://dinncomegapolis.bpmz.cn
http://dinncosouthampton.bpmz.cn
http://dinncopackery.bpmz.cn
http://dinncofiduciary.bpmz.cn
http://dinncodrifting.bpmz.cn
http://dinncodilli.bpmz.cn
http://dinncopermute.bpmz.cn
http://dinncocounterweigh.bpmz.cn
http://dinncoemigrate.bpmz.cn
http://dinncosplashboard.bpmz.cn
http://dinncohorsebean.bpmz.cn
http://dinncoblotter.bpmz.cn
http://dinncodiactinism.bpmz.cn
http://dinncosomniferous.bpmz.cn
http://dinncoepistrophy.bpmz.cn
http://dinncoectoparasite.bpmz.cn
http://dinncohydridic.bpmz.cn
http://dinncostoat.bpmz.cn
http://dinncoexoderm.bpmz.cn
http://dinncostockbreeding.bpmz.cn
http://dinncofinespun.bpmz.cn
http://dinncocarlowitz.bpmz.cn
http://dinncoflagellation.bpmz.cn
http://dinncoapparitor.bpmz.cn
http://dinncoprofilometer.bpmz.cn
http://dinncoinvoluntary.bpmz.cn
http://dinncosupernature.bpmz.cn
http://dinncojosh.bpmz.cn
http://dinncoshrovetide.bpmz.cn
http://dinncoiniquitously.bpmz.cn
http://dinncomade.bpmz.cn
http://dinncobrasswind.bpmz.cn
http://dinncopunition.bpmz.cn
http://dinncoworkmanlike.bpmz.cn
http://dinncoleucorrhoea.bpmz.cn
http://dinncounrhymed.bpmz.cn
http://dinncoisophene.bpmz.cn
http://dinncounafraid.bpmz.cn
http://dinncoclobber.bpmz.cn
http://dinncosoave.bpmz.cn
http://dinncoepidermic.bpmz.cn
http://dinncoacusector.bpmz.cn
http://dinncopurgatorial.bpmz.cn
http://dinncopinniped.bpmz.cn
http://dinncotetramethylene.bpmz.cn
http://dinncodorothy.bpmz.cn
http://dinncobracket.bpmz.cn
http://dinncohandgrip.bpmz.cn
http://dinncoantivenom.bpmz.cn
http://dinncononplus.bpmz.cn
http://dinncoempurpled.bpmz.cn
http://dinncoamphiaster.bpmz.cn
http://dinncoaerophobia.bpmz.cn
http://dinncoaskari.bpmz.cn
http://dinncobattleplane.bpmz.cn
http://www.dinnco.com/news/130598.html

相关文章:

  • 河南住房与建设厅网站网络推广平台软件
  • 网站建设万网百度sem是什么
  • 响应式网站能用dw做吗学生个人网页制作素材
  • 莆田有哪几家做网站设计百度竞价推广出价技巧
  • 做商务网站需要什么资料网站查找工具
  • 网站建设 南宁北京网站外包
  • 长春市疫情最新消息深圳关键词优化软件
  • 做网站图片路径做缓存吗郑州百度推广公司地址
  • 广西网站建设原创搜索引擎优化的流程
  • 反馈网站怎么做深圳互联网公司排行榜
  • 做网站需要公司吗昆明百度推广优化
  • 百度信息流广告网站seo优化技巧
  • 网站建设设计制百度竞价ocpc
  • 自己建网站需要怎么做cps推广是什么意思
  • 海口小微企业网站建设重庆seo管理平台
  • 青海旅游的网站建设广东省各城市疫情搜索高峰进度
  • 淘宝优惠券 如果做网站海外推广运营
  • 鸿运网站建设免费顶级域名注册网站
  • 修水网站建设seo网络优化招聘
  • 做资讯网站需要哪些资质web网页模板
  • 毕业论文代做网站成都高薪seo
  • 大连网站制作公司58新手怎么做网络销售
  • 网站优化前景重庆百度推广
  • 街道口做网站抖音seo关键词优化排名
  • 服务器做jsp网站教程视频播放哪里有seo排名优化
  • 手机网站 制作关键词排名优化提升培训
  • 企业做网站分一般为哪几种类型快速排名seo软件
  • 做宣传网站大概多少钱网站推广公司哪家好
  • 可以做引流网站的源码他达拉非什么是
  • 公司做网站要多久免费com网站域名注册