当前位置: 首页 > news >正文

网站模板政府网站免费怎样注册一个自己的平台

网站模板政府网站免费,怎样注册一个自己的平台,建设银行网站打不开其他网站可以用吗,福建省住房和建设网站引入 当CPU执行程序时,需要频繁地访问主存储器(RAM)中的数据和指令。然而,主存储器的访问速度相对较慢,与CPU的运算速度相比存在显著差异,每次都从主存中读取数据都会导致相对较长的等待时间,从…

引入

当CPU执行程序时,需要频繁地访问主存储器(RAM)中的数据和指令。然而,主存储器的访问速度相对较慢,与CPU的运算速度相比存在显著差异,每次都从主存中读取数据都会导致相对较长的等待时间,从而降低计算机的整体性能。为了减弱这种速度差异带来的影响,计算机系统引入了高速缓存(cache)作为中间层,用于存储主存储器中CPU经常访问的数据和指令。

所以,高速缓存应该缓存哪些数据以尽可能提高缓存命中率呢?这就涉及到了局部性原理的作用。

局部性原理

局部性原理是指程序访问数据和指令的模式往往具有以下两种特点:

  1. 时间局部性:如果一个存储位置被访问,在不久的将来它很可能再次被访问。这意味着计算机系统很可能会重复地访问同一个数据或指令。
  2. 空间局部性:如果一个存储位置被访问,附近的存储位置也很可能在不久的将来被访问。这意味着计算机系统在访问数据或指令时,很可能会顺序地访问附近的数据或指令。

基于局部性原理,高速缓存的设计通常采用了缓存行(Cache Line)的概念。缓存行是高速缓存中最小的存储单元,一般大小为几十字节到几百字节。当CPU访问主存储器的数据时,高速缓存将一整个缓存行的数据加载到缓存中,而不仅仅是所需的单个数据。这样,如果CPU在不久的将来需要附近的数据,它们很可能已经在同一缓存行中了,从而避免了频繁地访问主存储器。

当我们谈论算法或数据结构的“缓存友好”性质时,指的是这些算法或数据结构在计算机的缓存系统中表现良好,从而提高程序的性能。缓存友好性是一个重要的性能指标,以下是三个缓存友好性的测试例子,更深刻体会下缓存友好的重要性。

顺序访问数组

顺序访问数组:顺序访问数组中的元素是缓存友好的操作。当程序连续读取数组的元素时,计算机缓存可以将整个连续的数据块加载到缓存中,从而加快访问速度。相比之下,随机访问数组元素可能导致缓存不命中,需要频繁地从内存中读取数据,降低了访问速度。

通过一个很经典的例子来感受下缓存的存在:假设我们有一个二维矩阵,并且要对它进行某种操作,例如求和或者求积。考虑以下两种遍历方式:

  1. 行优先遍历:按照行优先遍历矩阵,先访问第一行的所有元素,然后是第二行的所有元素,以此类推。
  2. 列优先遍历:按照列优先遍历矩阵,先访问第一列的所有元素,然后是第二列的所有元素,以此类推。

因为局部性原理,当我们对矩阵进行遍历时,如果采用行优先遍历方式,那么连续的内存块都是同一行的元素,这样的访问方式在缓存中具有较好的局部性,能够更好地利用缓存,从而提高访问效率。相比之下,如果采用列优先遍历方式,由于矩阵中的元素是按列存储的,访问过程会在内存中跳跃,这会导致缓存不命中,降低访问效率。

import java.util.Random;public class CacheFriendlyTest {public static void main(String[] args) {int rows = 10000;int cols = 10000;int[][] matrix = new int[rows][cols];// Fill the matrix with random valuesRandom random = new Random();for (int i = 0; i < rows; i++) {for (int j = 0; j < cols; j++) {matrix[i][j] = random.nextInt(100);}}// Row-wise traversallong startTime = System.currentTimeMillis();long sumRowWise = 0;for (int i = 0; i < rows; i++) {for (int j = 0; j < cols; j++) {sumRowWise += matrix[i][j];}}long endTime = System.currentTimeMillis();System.out.println("Row-wise traversal time: " + (endTime - startTime) + " ms");// Column-wise traversalstartTime = System.currentTimeMillis();long sumColWise = 0;for (int j = 0; j < cols; j++) {for (int i = 0; i < rows; i++) {sumColWise += matrix[i][j];}}endTime = System.currentTimeMillis();System.out.println("Column-wise traversal time: " + (endTime - startTime) + " ms");System.out.println("Sum Row-Wise: " + sumRowWise);System.out.println("Sum Col-Wise: " + sumColWise);}
}

因此,虽然两种遍历方式在时间复杂度上是相同的(都是 O ( m ∗ n ) O(m * n) O(mn),其中 m 和 n 分别是矩阵的行数和列数),但行优先遍历的实际表现往往比列优先遍历要好得多。

Row-wise traversal time: 45 ms
Column-wise traversal time: 761 ms
Sum Row-Wise: 4949822692
Sum Col-Wise: 4949822692

紧凑数据结构

使用“紧凑”的数据结构可以提高缓存友好性。例如,使用数组而不是链表,因为数组的元素在内存中是连续存储的,而链表的节点分散在内存中,访问链表可能导致缓存不命中。

import java.util.ArrayList;
import java.util.Iterator;
import java.util.LinkedList;public class CompactDataStructureTest {public static void main(String[] args) {int dataSize = 1000000; // 数据规模int repeatCount = 1000;// 使用 ArrayList(数组)实现紧凑的数据结构ArrayList<Integer> arrayList = new ArrayList<>();for (int i = 0; i < dataSize; i++) {arrayList.add(i);}// 使用 LinkedList(链表)实现非紧凑的数据结构LinkedList<Integer> linkedList = new LinkedList<>();for (int i = 0; i < dataSize; i++) {linkedList.add(i);}// 测试 ArrayList 遍历性能long startTime = System.currentTimeMillis();for (int i = 0; i < repeatCount; i++) {Iterator<Integer> arrayIterator = arrayList.iterator();while (arrayIterator.hasNext()) {int value = arrayIterator.next();// 在这里可以对 value 进行一些操作,以避免编译器对循环的优化}}long endTime = System.currentTimeMillis();System.out.println("ArrayList traversal time: " + (endTime - startTime) + " ms");// 测试 LinkedList 遍历性能startTime = System.currentTimeMillis();for (int i = 0; i < repeatCount; i++) {Iterator<Integer> linkedListIterator = linkedList.iterator();while (linkedListIterator.hasNext()) {int value = linkedListIterator.next();// 在这里可以对 value 进行一些操作,以避免编译器对循环的优化}}endTime = System.currentTimeMillis();System.out.println("LinkedList traversal time: " + (endTime - startTime) + " ms");}
}

实际差距并不明显,想来 JDK 对 LinkedList 的存储进行了优化。

ArrayList traversal time: 598 ms
LinkedList traversal time: 2585 ms

矩阵乘法

假设我们有两个 n x n 的矩阵 A 和 B,我们想要计算它们的乘积 C。标准的矩阵乘法算法需要 O ( n 3 ) O(n^3) O(n3) 的时间复杂度,这是一种较高的复杂度,特别是对于大规模的矩阵。

Strassen 算法通过将两个矩阵分解成较小的子矩阵,并使用分治策略来减少乘法次数。在理论上,Strassen 算法的时间复杂度为 O ( n l o g 2 7 ) O(n^{log_27}) O(nlog27),约为 O ( n 2.807 ) O(n^{2.807}) O(n2.807)

但在实际中,并不总是比标准的 O(n^3) 算法表现更好,原因在于 Strassen 算法涉及多次递归,它的计算步骤涉及分解和合并子问题。这种递归的操作可能导致在计算大型矩阵乘法时,多次递归调用可能导致较多的缓存不命中,从而使得 Strassen 算法的实际性能不如预期。

import org.apache.commons.math3.linear.Array2DRowRealMatrix;
import org.apache.commons.math3.linear.RealMatrix;import java.util.Random;public class MatrixMultiplicationTest {public static void main(String[] args) {int n = 1000; // 矩阵大小 n x ndouble[][] A = new double[n][n];double[][] B = new double[n][n];// Fill the matrices with random valuesRandom random = new Random();for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) {A[i][j] = random.nextDouble();B[i][j] = random.nextDouble();}}// Test Standard Matrix Multiplicationlong startTime = System.currentTimeMillis();double[][] C = standardMatrixMultiplication(A, B);long endTime = System.currentTimeMillis();System.out.println("Standard Matrix Multiplication time: " + (endTime - startTime) + " ms");// Test Strassen Matrix MultiplicationstartTime = System.currentTimeMillis();double[][] D = strassenMatrixMultiplication(A, B);endTime = System.currentTimeMillis();System.out.println("Strassen Matrix Multiplication time: " + (endTime - startTime) + " ms");}// Standard Matrix Multiplicationpublic static double[][] standardMatrixMultiplication(double[][] A, double[][] B) {int n = A.length;double[][] C = new double[n][n];for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) {for (int k = 0; k < n; k++) {C[i][j] += A[i][k] * B[k][j];}}}return C;}// Strassen Matrix Multiplicationpublic static double[][] strassenMatrixMultiplication(double[][] A, double[][] B) {// Convert input arrays to RealMatrixRealMatrix matrixA = new Array2DRowRealMatrix(A);RealMatrix matrixB = new Array2DRowRealMatrix(B);// Perform Strassen matrix multiplicationRealMatrix matrixC = matrixA.multiply(matrixB);// Convert the result back to 2D arrayreturn matrixC.getData();}
}

需要以下依赖

<dependency><groupId>org.apache.commons</groupId><artifactId>commons-math3</artifactId><version>3.6.1</version> <!-- 版本号可能需要根据您当前使用的版本进行调整 -->
</dependency>

测试结果

Standard Matrix Multiplication time: 11608 ms
Strassen Matrix Multiplication time: 25238 ms

总结

上面几个例子中的代码是非常粗糙,不严谨,有很多因素没有考虑,只是理解下缓存友好的意义,希望在实践中有这个意识。

http://www.dinnco.com/news/13195.html

相关文章:

  • 泰安市疫情最新消息seo关键词排名优化官网
  • 电商之家官网杭州网站seo外包
  • 佛山建站模板搭建seo系统优化
  • 网站部署到服务器网络推广公司运作
  • 专业网站建设公司推广方式有哪些?
  • 申请免费网站域名蜂蜜网络营销推广方案
  • wordpress php扩展网站怎样优化文章关键词
  • wordpress用户注册积分seo优化流程
  • wordpress网站案例云优客seo排名公司
  • 聊天软件开发方案外贸建站优化
  • 网站制作公司北京百度seo分析工具
  • 优的网站建设明细报价表个人信息怎么在百度推广
  • 怎样做婚庆网站seo标题优化分析范文
  • 网站建设与制作价格百度搜索引擎的优缺点
  • 网站备案需要几天关键词seo报价
  • 旅游网站建设报价单推广赚钱软件排行
  • 怎么创办一个网站网址ip地址查询工具
  • 海口网站建设哪家最好网络营销策划书模板
  • 怎样做网站seo东莞网站排名推广
  • lnmp用端口做网站网络策划营销
  • 建立网站需要哪些手续网站制作和推广
  • 网站建设策划方营销技巧
  • 怎么用html做网站如何开发软件app
  • 佛山营销网站建设推广百度地图人工客服电话
  • 磁力网站怎么做的源码优化什么建立生育支持政策体系
  • 如何做vip微信电影网站线上营销培训
  • 网站策划 要求短视频推广渠道有哪些
  • 那个网站专门做幽默视频的杭州做搜索引擎网站的公司
  • 网站建设报班2022当下社会热点话题
  • 遵义市网站建设网站排名优化需要多久