当前位置: 首页 > news >正文

做淘宝美工和网站设计那个好发布软文的平台有哪些

做淘宝美工和网站设计那个好,发布软文的平台有哪些,深圳做网站公司那家比较好,装修素材图片都从什么网站找文章目录 概要实例一:硬币分割计数实例二:玉米粒分割计数 概要 在当今数字图像处理领域,图像分割技术是一项至关重要的任务。图像分割旨在将图像中的不同目标或区域准确地分开,为计算机视觉、图像识别和机器学习等领域提供了坚实…

文章目录

    • 概要
    • 实例一:硬币分割计数
    • 实例二:玉米粒分割计数

概要

在当今数字图像处理领域,图像分割技术是一项至关重要的任务。图像分割旨在将图像中的不同目标或区域准确地分开,为计算机视觉、图像识别和机器学习等领域提供了坚实的基础。在图像分割的广泛应用中,二值化、形态学预处理、距离变换以及分水岭算法等技术被广泛探讨和应用。

首先,二值化技术通过将灰度图像转化为黑白图像,为分割算法提供了清晰的背景和前景。其次,形态学预处理通过腐蚀、膨胀等操作,清除噪声、连接物体,为后续处理提供了更加准确的图像。接着,距离变换技术能够量化地描述图像中各个像素点与目标的距离关系,为图像分析提供了重要依据。最后,分水岭算法则是一种高度智能的分割技术,通过模拟水流形成分割边界,解决了复杂目标重叠和交叉的挑战。

实例一:硬币分割计数

导入必要的库:

from skimage.feature import peak_local_max
from skimage.morphology import watershed
from scipy import ndimage
import numpy as np
import argparse
import imutils
import cv2

加载并预处理图像:

image = cv2.imread("1.jpg")
shifted = cv2.pyrMeanShiftFiltering(image, 21, 51)
cv2.imshow("Input", image)

这里使用了均值迁移滤波(Mean Shift Filtering)来平滑图像,使得图像中的区域更加集中,有助于后续的阈值处理。

将图像转换为灰度图,然后进行二值化处理:

gray = cv2.cvtColor(shifted, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
cv2.imshow("Thresh", thresh)

这里使用了Otsu的阈值处理方法,将灰度图转换为二值图。

计算距离变换并找到峰值:

D = ndimage.distance_transform_edt(thresh)
localMax = peak_local_max(D, indices=False, min_distance=10, labels=thresh)

这一步计算了二值化图像的距离变换(Euclidean Distance Transform),然后找到了距离图中的峰值点。

应用分水岭算法进行图像分割:

markers = ndimage.label(localMax, structure=np.ones((3, 3)))[0]
labels = watershed(-D, markers, mask=thresh)

这里使用了分水岭算法,通过标记(markers)和掩码(mask)将图像分割成不同的区域。

分割结果的后处理:

for label in np.unique(labels):# if the label is zero, we are examining the 'background'# so simply ignore itif label == 0:continue# otherwise, allocate memory for the label region and draw# it on the maskmask = np.zeros(gray.shape, dtype="uint8")mask[labels == label] = 255# detect contours in the mask and grab the largest onecnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)cnts = imutils.grab_contours(cnts)c = max(cnts, key=cv2.contourArea)# draw a circle enclosing the object((x, y), r) = cv2.minEnclosingCircle(c)cv2.circle(image, (int(x), int(y)), int(r), (0, 255, 0), 2)cv2.putText(image, "{}".format(label), (int(x) - 10, int(y)),cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)

在这个循环中,对分水岭算法得到的每个区域进行处理,找到每个区域的轮廓,然后用圆圈标注出物体的轮廓,并在标注中显示区域的标签。

显示最终的分割结果:

 cv2.imshow("Output", image)cv2.waitKey(0)cv2.destroyAllWindows()
最终,代码将显示带有分割结果的原始图像。

这段代码演示了一个完整的图像分割流程,包括图像预处理、距离变换、分水岭算法的应用,以及对分割结果的后处理和可视化。
全部代码:

# import the necessary packages
from skimage.feature import peak_local_max
from scipy import ndimage
import numpy as np
import argparse
import imutils
import cv2
from skimage.morphology import watershed
# load the image and perform pyramid mean shift filtering
# to aid the thresholding step
image = cv2.imread("img.png")
shifted = cv2.pyrMeanShiftFiltering(image, 21, 51)
cv2.imshow("Input", image)# convert the mean shift image to grayscale, then apply
# Otsu's thresholding
gray = cv2.cvtColor(shifted, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
cv2.imshow("Thresh", thresh)# compute the exact Euclidean distance from every binary
# pixel to the nearest zero pixel, then find peaks in this
# distance map
D = ndimage.distance_transform_edt(thresh)
localMax = peak_local_max(D, indices=False, min_distance=10,labels=thresh)# perform a connected component analysis on the local peaks,
# using 8-connectivity, then appy the Watershed algorithm
markers = ndimage.label(localMax, structure=np.ones((3, 3)))[0]
labels = watershed(-D, markers, mask=thresh)
print("[INFO] {} unique segments found".format(len(np.unique(labels)) - 1))# loop over the unique labels returned by the Watershed
# algorithm
for label in np.unique(labels):# if the label is zero, we are examining the 'background'# so simply ignore itif label == 0:continue# otherwise, allocate memory for the label region and draw# it on the maskmask = np.zeros(gray.shape, dtype="uint8")mask[labels == label] = 255# detect contours in the mask and grab the largest onecnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)cnts = imutils.grab_contours(cnts)c = max(cnts, key=cv2.contourArea)# draw a circle enclosing the object((x, y), r) = cv2.minEnclosingCircle(c)cv2.circle(image, (int(x), int(y)), int(r), (0, 255, 0), 2)cv2.putText(image, "{}".format(label), (int(x) - 10, int(y)),cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)# show the output image
cv2.imshow("Output", image)
cv2.waitKey(0)
cv2.destroyAllWindows()

使用时候将图片放在同级目录,修改文件名字即可:
img.png,11行修改即可。
硬币图片自己随便找,复制图像截屏使用都可以:
在这里插入图片描述

在这里插入图片描述

使用结果:
三张图片:
在这里插入图片描述
注意:
导入库函数的部分,这个skimage库函数的没有,需要下载全部名字。
在环境下载库函数

pip install scikit-image -i https://pypi.tuna.tsinghua.edu.cn/simple

如果导入成功,但是运行报错:

D:\anaconda\envs\yolov5\python.exe E:\yolo项目\Opencv-project-main\Opencv-project-main\CVZone\光流\11.py 
Traceback (most recent call last):File "E:\yolo项目\Opencv-project-main\Opencv-project-main\CVZone\光流\11.py", line 26, in <module>localMax = peak_local_max(D, indices=False, min_distance=10,
TypeError: peak_local_max() got an unexpected keyword argument 'indices'Process finished with exit code 1

说明使用的peak_local_max函数的参数中含有indices,但该函数在较新的版本中已经没有该参数了。

这可能是由于scikit-image库版本过高导致的。检查scikit-image库版本是否为0.17.2或更高版本,如果是,可以将该库回退到0.16.2版本:

pip install scikit-image==0.16.2 -i https://pypi.tuna.tsinghua.edu.cn/simple

如果依然想要使用最新的scikit-image库,将indices参数删除并改用默认值即可,例如:

localMax = peak_local_max(D, min_distance=10,threshold_abs=threshold)

这样可以避免indices参数引起的错误。

实例二:玉米粒分割计数

导入必要的库:

import numpy as np
import cv2
from matplotlib import pyplot as plt

读取图像并进行灰度化处理:

img = cv2.imread('5.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

二值化处理:

ret, thresh = cv2.threshold(gray, 245, 255, cv2.THRESH_BINARY)

这一步将灰度图像转换为二值图像,其中灰度值大于等于245的像素被设为255(白色),小于245的像素被设为0(黑色)。

图像膨胀:

k = cv2.getStructuringElement(cv2.MORPH_RECT, (13, 13))
dilate = cv2.dilate(thresh, k, iterations=3)

通过膨胀操作,将二值图像中的物体区域扩大,便于后续处理。

距离变换:

cv2.bitwise_not(dilate, dilate)
dist_transform = cv2.distanceTransform(dilate, cv2.DIST_L2, 3)
dist = cv2.normalize(dist_transform, dist_transform, 0, 1.0, cv2.NORM_MINMAX)

这一步计算了图像中每个像素点到最近的背景像素的距离,得到了距离变换图。在这个图像中,物体的中心部分距离背景较远,而边缘部分距离背景较近。

二值化距离变换图:

dist = cv2.convertScaleAbs(dist)
ret2, morph = cv2.threshold(dist, 0.99, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

这一步将距离变换图二值化,得到了分割后的图像。

形态学开运算:

k2 = cv2.getStructuringElement(cv2.MORPH_RECT, (11, 5))
sure_fg = cv2.morphologyEx(morph, cv2.MORPH_OPEN, k2, iterations=1)

这一步通过形态学开运算去除小的噪点,保留大的物体区域。

寻找轮廓并标注:

thresh, contours, hierarchy = cv2.findContours(sure_fg, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for i in range(0, len(contours)):(x, y, w, h) = cv2.boundingRect(contours[i])cv2.circle(img, (x + int(w / 2), y + int(h / 2)), 20, (0, 0, 255), -1, cv2.LINE_AA)cv2.putText(img, str(i + 1), (x + int(w / 2) - 15, y + int(h / 2) + 5), font, 0.8, (0, 255, 0), 2)

这一步使用cv2.findContours函数找到图像中的轮廓,然后绘制圆圈和文本标注在图像上,表示找到的物体区域。

显示和保存结果:

cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

最后,通过cv2.imshow显示处理后的图像。

全部代码:

import numpy as np
import cv2
from matplotlib import pyplot as pltfont = cv2.FONT_HERSHEY_SIMPLEXimg = cv2.imread('img_2.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 245, 255, cv2.THRESH_BINARY)
cv2.imshow("threshold", thresh)k = cv2.getStructuringElement(cv2.MORPH_RECT, (13, 13))
dilate = cv2.dilate(thresh, k, iterations=3)
cv2.imshow("dilate", dilate)cv2.bitwise_not(dilate, dilate)
dist_transform = cv2.distanceTransform(dilate, cv2.DIST_L2, 3)
dist = cv2.normalize(dist_transform, dist_transform, 0, 1.0, cv2.NORM_MINMAX)
cv2.imshow("distance", dist)
cv2.imwrite("dis.jpg", dist)# dist = np.uint8(dist)
dist = cv2.convertScaleAbs(dist)
ret2, morph = cv2.threshold(dist, 0.99, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# ret2, morph = cv2.threshold(dist,0,255,cv2.THRESH_BINARY_INV)
cv2.imshow("morph", morph)k2 = cv2.getStructuringElement(cv2.MORPH_RECT, (11, 5))
sure_fg = cv2.morphologyEx(morph, cv2.MORPH_OPEN, k2, iterations=1)  # 形态开运算cv2.imshow("result", sure_fg)thresh, contours, hierarchy = cv2.findContours(sure_fg, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for i in range(0, len(contours)):(x, y, w, h) = cv2.boundingRect(contours[i])# cv2.drawContours(img,contours,i,(0,255,0),5)cv2.circle(img, (x + int(w / 2), y + int(h / 2)), 20, (0, 0, 255), -1, cv2.LINE_AA)cv2.putText(img, str(i + 1), (x + int(w / 2) - 15, y + int(h / 2) + 5), font, 0.8, (0, 255, 0), 2)cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图:
在这里插入图片描述
结果:

在这里插入图片描述
opencv版本不适配可能报错:

D:\anaconda\envs\yolov5\python.exe E:\yolo项目\Opencv-project-main\Opencv-project-main\CVZone\光流\22.py 
Traceback (most recent call last):File "E:\yolo项目\Opencv-project-main\Opencv-project-main\CVZone\光流\22.py", line 33, in <module>thresh, contours, hierarchy = cv2.findContours(sure_fg, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
ValueError: not enough values to unpack (expected 3, got 2)Process finished with exit code 1

解决办法:
降低版本参考:
降低版本参考:
替换:

contours, _ = cv2.findContours(sure_fg, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

替换:在这里插入图片描述


文章转载自:
http://dinncorechoose.stkw.cn
http://dinncocvi.stkw.cn
http://dinncorapscallion.stkw.cn
http://dinncoglade.stkw.cn
http://dinncocasablanca.stkw.cn
http://dinncohypertonia.stkw.cn
http://dinncodependant.stkw.cn
http://dinnconagor.stkw.cn
http://dinncobovril.stkw.cn
http://dinncodevocalization.stkw.cn
http://dinncotine.stkw.cn
http://dinncoembracer.stkw.cn
http://dinncoparlormaid.stkw.cn
http://dinncohun.stkw.cn
http://dinncomucolytic.stkw.cn
http://dinncoracemate.stkw.cn
http://dinncoquote.stkw.cn
http://dinncomakuta.stkw.cn
http://dinncodisenchantment.stkw.cn
http://dinncounpeel.stkw.cn
http://dinncoacoustician.stkw.cn
http://dinncophotogeology.stkw.cn
http://dinncohygroscope.stkw.cn
http://dinncodermatoglyph.stkw.cn
http://dinncobotfly.stkw.cn
http://dinncomotility.stkw.cn
http://dinncoalexandra.stkw.cn
http://dinncodissonance.stkw.cn
http://dinncovolumetric.stkw.cn
http://dinncoearclip.stkw.cn
http://dinncopterosaurian.stkw.cn
http://dinncosinuatrial.stkw.cn
http://dinncowindstorm.stkw.cn
http://dinncopiston.stkw.cn
http://dinncotacheometry.stkw.cn
http://dinncolayout.stkw.cn
http://dinncoantonia.stkw.cn
http://dinncomridang.stkw.cn
http://dinncoigbo.stkw.cn
http://dinncopolonia.stkw.cn
http://dinncopaleoclimate.stkw.cn
http://dinncodeepfreeze.stkw.cn
http://dinncostruma.stkw.cn
http://dinncorauwolfia.stkw.cn
http://dinnconarcoleptic.stkw.cn
http://dinncoct.stkw.cn
http://dinncoupflow.stkw.cn
http://dinncopractically.stkw.cn
http://dinncotouzle.stkw.cn
http://dinncogutturonasal.stkw.cn
http://dinncohistorify.stkw.cn
http://dinncocrackerjack.stkw.cn
http://dinncofrusemide.stkw.cn
http://dinncomonoatomic.stkw.cn
http://dinncorolled.stkw.cn
http://dinncocrematorium.stkw.cn
http://dinncohypodiploid.stkw.cn
http://dinncodaughterly.stkw.cn
http://dinncosinkable.stkw.cn
http://dinncoswami.stkw.cn
http://dinncounweary.stkw.cn
http://dinncosidekick.stkw.cn
http://dinncocountryman.stkw.cn
http://dinncounostentatious.stkw.cn
http://dinncocheribon.stkw.cn
http://dinncoelijah.stkw.cn
http://dinncomahabharata.stkw.cn
http://dinncochiffonier.stkw.cn
http://dinncochancellorship.stkw.cn
http://dinncogq.stkw.cn
http://dinncomargin.stkw.cn
http://dinncoosteocope.stkw.cn
http://dinncopremonitory.stkw.cn
http://dinncoquadric.stkw.cn
http://dinncoswish.stkw.cn
http://dinncocispontine.stkw.cn
http://dinncobeehouse.stkw.cn
http://dinncosherbet.stkw.cn
http://dinncoanalyzer.stkw.cn
http://dinncolathyrism.stkw.cn
http://dinncoreprieval.stkw.cn
http://dinncoamoeban.stkw.cn
http://dinncosemileptonic.stkw.cn
http://dinncolordling.stkw.cn
http://dinncomicroprogrammable.stkw.cn
http://dinncocyan.stkw.cn
http://dinncopurity.stkw.cn
http://dinncofolksay.stkw.cn
http://dinncophosphorize.stkw.cn
http://dinncoellipse.stkw.cn
http://dinncopatchy.stkw.cn
http://dinncobifurcated.stkw.cn
http://dinncoinclement.stkw.cn
http://dinncoheadwaters.stkw.cn
http://dinncocantaloup.stkw.cn
http://dinncorollback.stkw.cn
http://dinncoaleatorism.stkw.cn
http://dinncohunchback.stkw.cn
http://dinncolightfastness.stkw.cn
http://dinncoradnor.stkw.cn
http://www.dinnco.com/news/137455.html

相关文章:

  • 网站建设考试题目口碑营销的作用
  • 做二手车的网站培训中心
  • wordpress换行不换段落潍坊自动seo
  • 如何自己开发微网站天津网络推广公司
  • 系统安装两个wordpress公司网站优化方案
  • 中国疫情最新消息发布排名优化服务
  • 佛山市手机网站建设百度查关键词显示排名
  • 商业门户网站怎么运营网站创建流程
  • 网站做软件有哪些内容全网营销推广软件
  • 杭州互助盘网站开发软文类型
  • seo网站建设及扩词搜索引擎seo是什么意思
  • 嘉定营销型 网站制作网站搜索优化找哪家
  • 霍州做网站网站优化策划书
  • 网站开发顺序关键词搜索
  • 网站建设的服务怎么样网络营销研究背景及意义
  • 防伪查询网站产品如何做市场推广
  • 网站建设合同图片数据分析师培训机构
  • 建网站公建网站公司域名历史查询工具
  • 彩票网站怎么做系统百度搜索排名怎么靠前
  • 政府网站开发的建议最近一个月的热点事件
  • 官方网站建设意义品牌推广活动有哪些
  • 大同网站设计seo整站优化外包公司
  • 公共资源交易中心上班怎么样台州优化排名推广
  • 如何做向日葵官方网站巨量引擎广告投放平台代理
  • 大型网站改版抖音seo是什么意思
  • 哪个网站可以做思维导图百度搜索词排名
  • 灰色项目网站代做seo教程最新
  • 哪些网站可以做电脑画画赚钱云南最新消息
  • 网站中的滚动照片怎么做百度地图网页版
  • 什么网站可以在图片上做超链接seo刷排名公司