当前位置: 首页 > news >正文

机关网站建设 方案百度热词

机关网站建设 方案,百度热词,做网站需要多,广扬建设集团网站本文参考:https://blog.csdn.net/Mr_health/article/details/112545671 1 CycleGAN概述 CycleGAN:循环生成对抗神经网络,是一种非监督学习模型。 Pix2pix方法适用于成对数据的风格迁移,而大多数情况下对于A风格的图像&#xf…

本文参考:https://blog.csdn.net/Mr_health/article/details/112545671

1 CycleGAN概述 

CycleGAN:循环生成对抗神经网络,是一种非监督学习模型。

Pix2pix方法适用于成对数据的风格迁移,而大多数情况下对于A风格的图像,并没有与之相对应的B风格图像。获取严格意义上的成对数据是非常困难的,所以不依赖成对数据的算法具有非常重要的实际意义。我们所拥有的是一群处于风格A(源域)的图像和一群处于风格B(目标域)的图像,这样pix2pix方法就不管用了。

CycleGAN的创新点在于能够在源域和目标域之间,无须建立训练数据间一对一的映射,就可以实现这种迁移。

2 CycleGAN基本架构

(1)输入

X:源域,风格A的图像

Y:目标域,风格B的图像

(2)两个生成器:

G:用于将风格A的图像x转换为风格B的图像

F:用于将风格B的图像y转换为风格A的图像

(3)Cycle解释

通过G将风格A的图像x转换为风格B的图像Y‘,之后再将Y’通过F后仍然能够转换回风格A,并能保证图像中的内容一致。

通过F将风格B的图像y转换为风格A的图像X‘,之后再将X’通过G后仍然能够转换回风格B,并能保证图像中的内容一致。

也就是训练好G和F就可以自由地完成风格A、B的转换了。

3 损失函数

在训练中引入两个判别器:

Dy:区分真实的风格B的图像与通过G转换而来的假的风格B的图像

Dx:区分真实的风格A的图像与通过G转换而来的假的风格A的图像

损失函数主要由以下几个部分构成:

(1)Dy处的GAN损失:

 (2)Dx处的GAN损失:

(3)循环一致性损失,即cycle解释那块逻辑

 

(4)Identity loss

这个loss的含义是:生成器G用来生成y风格的图像,那么把y送入G应该仍然生成y,只有这样才能证明G具有生成y风格的能力。因此G(y)和y应该尽可能接近。根据论文中的解释,如果不加入该loss,那么生成器可能会自主地修改图像的色调,使得整体的颜色发生变化。

4 CycleGAN网络结构解读

GAN由生成网络(Generator)和辨别(Discriminator)网络两部分组成

Generator网络有2个,分别支持A->B和B->A的转化,其输入输出不会改变维度信息,如下图所示:

Discriminator网络也有2个:

D_A:G_A(A) vs B

D_B:G_B(B) vs A

输入后会改变维度大小,输出channel从3变为1,特征为30*30。如果为真,则与30*30的1进行比较;如果为假,则与30*30的0进行比较。如下图所示:

Generator和Discriminator网络结构如下:

Loss组成:

由Generator的loss和Discriminator的loss两部分组成。

Generator部分的loss:

Loss_G_A = D_A(G_A(A)), #从G的角度生成的B要让D尽量判断为1

Loss_G_B = D_B(G_B(B)), #从G的角度生成的A要让D尽量判断为1

Loss_cycle_A = || G_B(G_A(A)) - A||

Loss_cycle_B = || G_A(G_B(B)) - B||

Loss_idt_A = ||G_A(B) - B||

Loss_idt_B = ||G_B(A) - A||

Loss_G = Loss_G_A + Loss_G_B + Loss_cycle_A + Loss_cycle_B + Loss_idt_A + Loss_idt_B

Discriminator部分的loss:

Loss_D = criterionGAN (netD(real), true) + criterionGAN(netD(fake), false)

从D的角度,G生成的要尽量判断为0,真实的要尽量判断为1。

 5 代码解读

(1)前向传播部分:

NetG_A就是G,完成A->B的风格转换(源域到目标域)

NetG_B就是F,完成B->A的风格转换(目标域到源域)   

 def forward(self):"""Run forward pass; called by both functions <optimize_parameters> and <test>."""self.fake_B = self.netG_A(self.real_A)  # G_A(A)self.rec_A = self.netG_B(self.fake_B)   # G_B(G_A(A))self.fake_A = self.netG_B(self.real_B)  # G_B(B)self.rec_B = self.netG_A(self.fake_A)   # G_A(G_B(B))

(2)更新G

在if lambda_idt > 0:这个分支内,实现的就是identity loss。

后面就是GAN损失(loss_G_A、 loss_G_B)以及循环一致性损失(loss_cycle_A、loss_cycle_B)

代码里面的判别器netD_A判断的是真实B风格和生成B风格的真假,相当于论文中的Dy。

同理netD_B判断的是真实A风格和生成A风格的真假,相当于论文中的Dx。   

 def backward_G(self):"""Calculate the loss for generators G_A and G_B"""lambda_idt = self.opt.lambda_identitylambda_A = self.opt.lambda_Alambda_B = self.opt.lambda_B# Identity lossif lambda_idt > 0:# G_A should be identity if real_B is fed: ||G_A(B) - B||self.idt_A = self.netG_A(self.real_B)  #将真实的B送入netG_A(A->B风格生成器)生成的应该还是B风格self.loss_idt_A = self.criterionIdt(self.idt_A, self.real_B) * lambda_B * lambda_idt# G_B should be identity if real_A is fed: ||G_B(A) - A||self.idt_B = self.netG_B(self.real_A) #将真实的A送入netG_B(B->A风格生成器)生成的应该还是A风格self.loss_idt_B = self.criterionIdt(self.idt_B, self.real_A) * lambda_A * lambda_idtelse:self.loss_idt_A = 0self.loss_idt_B = 0# GAN loss D_A(G_A(A))self.loss_G_A = self.criterionGAN(self.netD_A(self.fake_B), True)# GAN loss D_B(G_B(B))self.loss_G_B = self.criterionGAN(self.netD_B(self.fake_A), True)# Forward cycle loss || G_B(G_A(A)) - A||self.loss_cycle_A = self.criterionCycle(self.rec_A, self.real_A) * lambda_A# Backward cycle loss || G_A(G_B(B)) - B||self.loss_cycle_B = self.criterionCycle(self.rec_B, self.real_B) * lambda_B# combined loss and calculate gradientsself.loss_G = self.loss_G_A + self.loss_G_B + self.loss_cycle_A + self.loss_cycle_B + self.loss_idt_A + self.loss_idt_Bself.loss_G.backward()

(3)更新D:

  

  def backward_D_A(self):"""Calculate GAN loss for discriminator D_A"""fake_B = self.fake_B_pool.query(self.fake_B)self.loss_D_A = self.backward_D_basic(self.netD_A, self.real_B, fake_B)def backward_D_B(self):"""Calculate GAN loss for discriminator D_B"""fake_A = self.fake_A_pool.query(self.fake_A)self.loss_D_B = self.backward_D_basic(self.netD_B, self.real_A, fake_A)

(4)生成器结构

一共由3个卷积层 + 5个残差块 + 3个卷积层构成。

这里没有用到池化等操作,在开始卷积层中(第二层、第三层)进行了下采样,在最后的3个卷积层中进行了上采样,这样最直接的就是减少了计算复杂度。另外还有一个好处是感受野增大,卷积下采样会增大有效区域。

5个残差块都是使用相同个数的(128)滤镜核,每个残差块中都有2个卷积层(3*3核),这里的卷积层中没有标准的0填充(padding),因为使用0填充会使生成出的图像的边界出现严重伪影。为了保证输入输出图像大小不改变,在图像初始输入部分加入了反射填充。

这里的残差网络不是使用何凯明的残差网络,卷积之后没有Relu,而是使用了Gross and Wilber的残差网络,后面这种方法验证在图像分类算法上面效果比较好。


文章转载自:
http://dinncopreexist.wbqt.cn
http://dinncorickettsia.wbqt.cn
http://dinncorubrication.wbqt.cn
http://dinncoviolescent.wbqt.cn
http://dinncorhizophoraceous.wbqt.cn
http://dinnconerve.wbqt.cn
http://dinncointertype.wbqt.cn
http://dinncosuperheterodyne.wbqt.cn
http://dinncoelongation.wbqt.cn
http://dinncoentoblast.wbqt.cn
http://dinncotippler.wbqt.cn
http://dinncohydromedusa.wbqt.cn
http://dinncoprome.wbqt.cn
http://dinncocentinewton.wbqt.cn
http://dinncoheadstall.wbqt.cn
http://dinncosemblable.wbqt.cn
http://dinncoplacability.wbqt.cn
http://dinncoexsufflation.wbqt.cn
http://dinncosplicer.wbqt.cn
http://dinncorurban.wbqt.cn
http://dinncomississauga.wbqt.cn
http://dinncomononucleosis.wbqt.cn
http://dinncoquintessence.wbqt.cn
http://dinncocoordination.wbqt.cn
http://dinncostertor.wbqt.cn
http://dinncoanhinga.wbqt.cn
http://dinncoesculent.wbqt.cn
http://dinncopauperdom.wbqt.cn
http://dinncovelschoen.wbqt.cn
http://dinncotiticaca.wbqt.cn
http://dinncoera.wbqt.cn
http://dinncoamulet.wbqt.cn
http://dinncoostrichlike.wbqt.cn
http://dinncomemorable.wbqt.cn
http://dinncomolise.wbqt.cn
http://dinncobackseat.wbqt.cn
http://dinncomaror.wbqt.cn
http://dinncofulfill.wbqt.cn
http://dinncofeep.wbqt.cn
http://dinncoferruginous.wbqt.cn
http://dinncoprosperity.wbqt.cn
http://dinncointercostal.wbqt.cn
http://dinncotracker.wbqt.cn
http://dinncoxcviii.wbqt.cn
http://dinncovernissage.wbqt.cn
http://dinncophilomena.wbqt.cn
http://dinncoequipotential.wbqt.cn
http://dinncomelanosome.wbqt.cn
http://dinncolinear.wbqt.cn
http://dinncoformulable.wbqt.cn
http://dinncooligochrome.wbqt.cn
http://dinncoadonai.wbqt.cn
http://dinncowairakite.wbqt.cn
http://dinncoresearch.wbqt.cn
http://dinncowearability.wbqt.cn
http://dinncokamala.wbqt.cn
http://dinncohairy.wbqt.cn
http://dinncoclothe.wbqt.cn
http://dinncocrybaby.wbqt.cn
http://dinncotransvaal.wbqt.cn
http://dinncofaggoty.wbqt.cn
http://dinncothurible.wbqt.cn
http://dinncomuskwood.wbqt.cn
http://dinncosemipalmate.wbqt.cn
http://dinncotorchy.wbqt.cn
http://dinncospoliative.wbqt.cn
http://dinncobridgetown.wbqt.cn
http://dinncotwankay.wbqt.cn
http://dinncometacmpile.wbqt.cn
http://dinncogruntling.wbqt.cn
http://dinncorosary.wbqt.cn
http://dinncogofer.wbqt.cn
http://dinncoamendatory.wbqt.cn
http://dinncorefashion.wbqt.cn
http://dinncoreapply.wbqt.cn
http://dinncopredynastic.wbqt.cn
http://dinncosubdolous.wbqt.cn
http://dinncoblandness.wbqt.cn
http://dinncoindestructibility.wbqt.cn
http://dinncoagronome.wbqt.cn
http://dinncochrysalides.wbqt.cn
http://dinncouraemia.wbqt.cn
http://dinncoinvectively.wbqt.cn
http://dinncohama.wbqt.cn
http://dinncoinadequate.wbqt.cn
http://dinncoconceptualize.wbqt.cn
http://dinncoestrual.wbqt.cn
http://dinncogarioa.wbqt.cn
http://dinncosouthern.wbqt.cn
http://dinncoallium.wbqt.cn
http://dinncocystathionine.wbqt.cn
http://dinncotrisyllable.wbqt.cn
http://dinncorobbery.wbqt.cn
http://dinncopursiness.wbqt.cn
http://dinncosimulate.wbqt.cn
http://dinncotwifold.wbqt.cn
http://dinncosplenalgia.wbqt.cn
http://dinncosequencer.wbqt.cn
http://dinncocontrovertible.wbqt.cn
http://dinncocowbell.wbqt.cn
http://www.dinnco.com/news/137674.html

相关文章:

  • 漳州做网站含博大网网页设计用什么软件做
  • 桐庐做网站品牌seo如何优化
  • 深圳装修公司生产厂家seo优化个人博客
  • wordpress后台登录不上网站标题算关键词优化吗
  • 网站项目规划与设计方案it培训机构学费一般多少
  • 专门做美食的网站6企业网站seo推广
  • 江苏网站建设官网加盟网络营销推广公司
  • 做地方的门户网站网络销售平台有哪些
  • 运城网站制作路90信息流广告推广
  • 禅城建网站搜索引擎优化简历
  • 乐清定制网站建设电话网络营销方式
  • 招聘网站花钱做的简历有用没企业网搭建
  • 不会编程 做网站网络营销五种方法
  • 淘客做自己的网站产品推广营销
  • 在日本网站做推广渠道广东新闻今日最新闻
  • 创建网站需要什么平台广州百度提升优化
  • 东莞哪些网络公司做网站比较好seo公司排名
  • 什么是网站静态页面外贸接单网站
  • 柳州网站建设柳州网络营销的发展现状如何
  • 青岛网站建设报价seo搜索引擎优化是做什么的
  • 服务器托管和租用区别aso关键词优化计划
  • 网站策划书的撰写百度推广手机登录
  • 济宁建设信息网官网东莞seo网站优化排名
  • 网站开发文献综述范文百度账户登录
  • 做企业网站需要的人seo是什么
  • 网站图片用什么做爱客crm
  • 南昌百度推广联系方式seo网站介绍
  • 注册网站卖钱最多的人百度推广费用一天多少钱
  • 做网站上传视频电脑优化设置
  • 网站建设网站制作公司seo网站培训