当前位置: 首页 > news >正文

江浙沪做网站的公司如何在百度发广告

江浙沪做网站的公司,如何在百度发广告,wordpress标签不被收录,cms是什么意思体积CART决策树(4-2) CART(Classification and Regression Trees)决策树是一种常用的机器学习算法,它既可以用于分类问题,也可以用于回归问题。CART决策树的主要原理是通过递归地将数据集划分为两个子集来构建决…

CART决策树(4-2)

CART(Classification and Regression Trees)决策树是一种常用的机器学习算法,它既可以用于分类问题,也可以用于回归问题。CART决策树的主要原理是通过递归地将数据集划分为两个子集来构建决策树。在分类问题中,CART决策树通过选择一个能够最大化分裂后各个子集纯度提升的特征进行分裂,从而将数据划分为不同的类别。

CART决策树的构建过程包括以下几个步骤:

  1. 特征选择:从数据集中选择一个最优特征,用于划分数据集。最优特征的选择基于某种准则,如基尼指数(Gini Index)或信息增益(Information Gain)。
  2. 决策树生成:根据选定的最优特征,将数据集划分为两个子集,并递归地在每个子集上重复上述过程,直到满足停止条件(如子集大小小于某个阈值、所有样本属于同一类别等)。
  3. 剪枝:为了避免过拟合,可以对生成的决策树进行剪枝操作,即删除一些子树或叶子节点,以提高模型的泛化能力。

CART决策树的优点包括:

  1. 计算简单,易于理解,可解释性强。
  2. 不需要预处理,不需要提前归一化,可以处理缺失值和异常值。
  3. 既可以处理离散值也可以处理连续值。
  4. 既可以用于分类问题,也可以用于回归问题。

然而,CART决策树也存在一些缺点:

  1. 不支持在线学习,当有新样本产生时,需要重新构建决策树模型。
  2. 容易出现过拟合现象,生成的决策树可能对训练数据有很好的分类能力,但对未知的测试数据却未必有很好的分类能力。
  3. 对于一些复杂的关系,如异或关系,CART决策树可能难以学习。

CART决策树在许多领域都有广泛的应用,如推荐系统中的商品推荐模型、金融风控中的信用评分和欺诈检测、医疗诊断中的疾病预测等。此外,CART决策树还可以用于社交媒体情感分析等领域。

  1. 数据

使用Universal Bank数据集。

示例:

        

IDAgeExperienceIncomeZIP CodeFamilyCCAvgEducationMortgagePersonal LoanSecurities AccountCD AccountOnlineCreditCard
1251499110741.61001000
24519349008931.51001000
339151194720111000000
43591009411212.72000000
53584591330412000001
63713299212140.4215500010
75327729171121.52000010
85024229394310.33000001
93510819008930.6210400010
103491809302318.93010000
1165391059471042.43000000
12295459027730.12000010
1348231149310623.83001000
145932409492042.52000010
15674111291741121001000
166030229505411.53000011
1738141309501044.7313410000
184218819430542.41000000
1946211939160428.13010000
205528219472010.52001001
215631259401540.9211100010
2257276390095323000010
23295629027711.2126000010
244418439132020.7116301000
2536111529552123.9115900001
264319299430530.519700010
274016839506440.23000000
2846201589006412.41000011
295630489453912.23000011
3038131199410413.32010111
315935359310611.2312200010
3240162994117122000010
335328419480120.6319300000
34306189133030.93000000
35315509403541.83000010
364824819264730.71000000
3759351219472012.91000001
385125719581411.4319800000
39421814194114353011110
403813809411540.7328500010
415732849267231.63001000
42349609412232.31000000
433271329001941.1241210010
443915459561610.71000010
4546201049406515.71000011
465731529472042.51000001
473914439501430.7215300010
4837121949138040.2321111111
495626819574724.53000001
504016499237311.81000001
5132889209340.72001010
5261371319472012.91000010
53306729400510.1120700000
5450261909024532.1324010010
55295449581910.23000010
56411713994022281000010
575530299400530.12001110
5856311319561621.23010000
59282939406520.21000000
603151889132024.5145500000
614924399040431.72001010
6247211259340715.7111201000
6342182290089111000000
6442173294523402000010
6547231059002423.31000000
6659351319136013.81000011
6762361059567022.8133600000
685323459512342313201000
694721609340732.11000011
705329209004540.21000010
7142181159133513.51000001
7253296993907412000010
73442013092007151000001
7441168594606143000011
752831359461123.31000001
763171359490143.82010111

注意:数据集中的编号(ID)和邮政编码(ZIP CODE)特征因为在分类模型中无意义,所以在数据预处理阶段将它们删除。

  1. 使用CART决策树对数据进行分类
  1. 使用留出法划分数据集,训练集:测试集为7:3。
# 使用留出法划分数据集,训练集:测试集为7:3
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
  1. 使用CART决策树对训练集进行训练
# 使用CART决策树对训练集进行训练,深度限制为10层
model = DecisionTreeClassifier(max_depth=10)
model.fit(X_train, y_train)

决策树的深度限制为10层,max_depth=10。

  1. 使用训练好的模型对测试集进行预测并输出预测结果模型准确度
# 使用训练好的模型对测试集进行预测
y_pred = model.predict(X_test)# 输出预测结果和模型准确度
accuracy = accuracy_score(y_test, y_pred)
print("模型准确度:", accuracy)
  1. 可视化训练好的CART决策树模型
# 可视化训练好的CART决策树模型
dot_data = export_graphviz(model, out_file=None,feature_names=X.columns,class_names=['0', '1'],filled=True, rounded=True,special_characters=True)
graph = graphviz.Source(dot_data)
graph.render("Universal_Bank_CART")  # 保存为PDF文件
  1. 安装graphviz模块

首先在windows系统中安装graphviz模块

32位系统使用windows_10_cmake_Release_graphviz-install-10.0.1-win32.exe

64位系统使用windows_10_cmake_Release_graphviz-install-10.0.1-win64.exe

注意:安装时使用下图中圈出的选项

安装完成后使用pip install graphviz指令在python环境中安装graphviz库。

  1. 使用graphviz模块可视化模型
# 可视化训练好的CART决策树模型
dot_data = export_graphviz(model, out_file=None,feature_names=X.columns,class_names=['0', '1'],filled=True, rounded=True,special_characters=True)
graph = graphviz.Source(dot_data)
graph.render("Universal_Bank_CART")  # 保存为PDF文件

完整代码:

# 导入所需的库
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn.tree import export_graphviz
import graphviz# 读取数据集
data = pd.read_csv("universalbank.csv")# 数据预处理:删除无意义特征
data = data.drop(columns=['ID', 'ZIP Code'])# 划分特征和标签
X = data.drop(columns=['Personal Loan'])
y = data['Personal Loan']# 使用留出法划分数据集,训练集:测试集为7:3
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 使用CART决策树对训练集进行训练,深度限制为10层
model = DecisionTreeClassifier(max_depth=10)
model.fit(X_train, y_train)# 使用训练好的模型对测试集进行预测
y_pred = model.predict(X_test)# 输出预测结果和模型准确度
accuracy = accuracy_score(y_test, y_pred)
print("模型准确度:", accuracy)# 可视化训练好的CART决策树模型
dot_data = export_graphviz(model, out_file=None,feature_names=X.columns,class_names=['0', '1'],filled=True, rounded=True,special_characters=True)
graph = graphviz.Source(dot_data)
graph.render("Universal_Bank_CART6")  # 保存为PDF文件

http://www.dinnco.com/news/14193.html

相关文章:

  • 河北沧州疫情最新数据seo网站优化方案案例
  • wordpress 腾讯地图插件网站关键词优化推广哪家快
  • 免费的b2b网站北京计算机培训机构哪个最好
  • 挂甲寺网站建设黑马培训价目表
  • 如何建设基层网站aso优化服务平台
  • 上海做网站哪家公司好百度自然排名优化
  • 路由器做网站终端多地优化完善疫情防控措施
  • linux服务器怎么做网站品牌运营管理有限公司
  • 网页设计页面链接seo网站排名优化案例
  • 阿里云主机网站开发竞价代运营外包公司
  • 建设网站需要用到哪些软件松松软文平台
  • 做服装最好的网站建设网站排名查询站长之家
  • 如需郑州网站建设搜索引擎排名优化价格
  • 做简历有什么网站关键词优化seo
  • it程序员需要什么学历seo优化及推广如何运营
  • 自动优化网站建设电话360竞价推广
  • 武汉中禾建设品牌关键词排名优化怎么做
  • jsporacle动态网站开发互联网域名交易中心
  • 如何做网站的优化广州网站优化公司如何
  • 一个ip可以做几个网站互联网营销师题库
  • 做网站哪个系统最安全如何查看百度搜索指数
  • 安徽建设工程信息网路灯项目口碑优化
  • 手表网站十大品牌百度人工客服电话
  • 漂亮的flash网站河南seo排名
  • 网站欢迎屏怎么做郑州seo教程
  • 晋中路桥建设集团网站网络优化工具
  • 坪山网站建设设计网站编辑
  • 济南学网站建设哪里好html网站模板免费
  • 山东跨境电商建站公司移动优化课主讲:夫唯老师
  • 网站上传独立服务器怎么宣传自己的产品