当前位置: 首页 > news >正文

wordpress子主题引用js铁力seo

wordpress子主题引用js,铁力seo,网站设计个人心得,网站建设项目教程大语言模型量化的目的是减少模型的计算资源需求和存储占用,同时尽量保持模型的性能。以下是几种常见的量化方法的原理; 1. GPTQ (Gradient-based Post-training Quantization) GPTQ 是一种基于梯度的后训练量化方法,主要目的是在减少浮点计…

大语言模型量化的目的是减少模型的计算资源需求和存储占用,同时尽量保持模型的性能。以下是几种常见的量化方法的原理;

1. GPTQ (Gradient-based Post-training Quantization)

GPTQ 是一种基于梯度的后训练量化方法,主要目的是在减少浮点计算时尽量保持模型的性能。这种方法对大语言模型的量化尤其有效,适用于 8-bit 或更低的量化需求。

原理

  • 后训练量化:模型已经训练完毕,不需要重新训练,只需在训练后对权重进行量化。
  • 梯度校正:在进行量化的过程中,GPTQ 通过优化目标函数,对量化误差进行最小化。它通过梯度优化调整量化时的权重误差,使得量化后模型的表现与未量化模型尽可能接近。
  • 误差补偿:由于量化不可避免地引入误差,GPTQ 采用了误差反馈机制,将量化过程中产生的误差传播到后续的层进行补偿,从而减少累积误差对模型输出结果的影响。

优点

  • 不需要额外的训练数据,只使用训练后的模型即可。
  • 相较于传统的直接量化方法(如固定比特宽度量化),GPTQ 的精度损失较小,特别适合复杂模型。

假设量化 LLaMA 模型,以下是一个基本的示例代码::

# # 环境安装
# pip install transformers accelerate
# pip install git+https://github.com/qwopqwop200/GPTQ-for-LLaMa.gitimport torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from gptq import GPTQ# 选择模型(你可以使用 LLaMA 或其他支持的模型)
model_name = "huggingface/llama"# 加载预训练模型和分词器
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)# 初始化 GPTQ
quantizer = GPTQ(model)# 设置量化位数(比如8-bit量化)
W_BITS = 8# 开始量化模型
quantizer.quantize(w_bits=W_BITS, layer_types=["self_attn", "mlp"])# 生成量化后的模型
quantized_model = quantizer.finish()# 测试模型推理(生成文本)
input_text = "What is the capital of France?"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = quantized_model.generate(**inputs, max_new_tokens=20)# 解码输出
decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(decoded_output)

2. GGUF (Generalized Global Uniform Quantization Framework)

GGUF 是一种通用的全局统一量化框架,专门设计用于处理大规模神经网络。它通常采用全局统一量化策略,即对整个模型的权重或激活值采用相同的量化参数,保持模型的一致性。

原理

  • 全局量化:将整个模型中的所有参数统一映射到固定的范围,比如使用 8-bit 或 4-bit 表示所有的浮点数。它假设模型的所有层或某一类参数具有相似的分布,从而可以使用相同的量化范围。
  • 均匀量化:所有的数值都被线性地映射到一个均匀的范围。这种方式计算效率高,尤其适合硬件加速器。
  • 权重重定标:由于采用统一量化策略,GGUF 通常会引入一个缩放因子,用来在推理阶段重定标量化后的数值,以避免数值溢出或精度过低的问题。

优点

  • 简单且高效,适用于低延迟推理场景。
  • 算法计算复杂度低,适合部署在资源有限的硬件上。

缺点

  • 由于全局采用统一的量化范围,对于模型某些权重分布极端的层来说,精度损失可能较大

演示如何对 Hugging Face 上的 GPT-2 模型进行 8-bit 全局统一量化

import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
from torch.quantization import QuantStub, DeQuantStub, quantize_dynamic# 加载 GPT2 模型和分词器
model_name = "gpt2"
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)# 打印原始模型的大小
print(f"Original model size: {model.num_parameters()} parameters")# 模型准备:将全局所有层量化(使用动态量化)
quantized_model = quantize_dynamic(model,  # 要量化的模型{torch.nn.Linear},  # 量化哪些层(这里是线性层)dtype=torch.qint8  # 量化数据类型,这里使用 8-bit 量化
)# 打印量化后的模型大小
print(f"Quantized model size: {sum(p.numel() for p in quantized_model.parameters())} parameters")# 测试量化后的模型生成文本
input_text = "Once upon a time"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = quantized_model.generate(**inputs, max_new_tokens=50)# 解码输出
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print("Generated text:", generated_text)

3. AWQ (Activation-aware Quantization)

AWQ 是一种关注激活值的量化方法,主要在量化过程中考虑了激活值分布对模型性能的影响。这种方法通过分析激活值的分布特性,在量化过程中对激活值进行适应性处理,从而提高量化后模型的准确性。

原理

  • 激活值感知:在对权重进行量化的同时,AWQ 也会对每一层的激活值分布进行分析。在某些层,激活值可能呈现出不均匀或长尾分布,导致量化过程中精度下降。AWQ 对这些激活值分布进行感知并自适应调整量化策略。
  • 非均匀量化:在量化激活值时,AWQ 并不采用线性均匀量化,而是针对不同的激活值范围选择不同的量化尺度。这样可以更好地捕捉激活值的细节,减少量化误差。
  • 动态缩放:通过动态调整每层的量化缩放因子,使得量化后的激活值分布尽量保持和原始模型一致。

优点

  • 在模型的不同层次灵活调整量化策略,减少精度损失。
  • 适合模型推理阶段需要高精度的场景。

缺点

  • 相比全局统一量化,计算复杂度略高,可能需要更多的计算资源。
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
from torch.quantization import QuantStub, DeQuantStub, prepare_qat, convert# 加载 GPT-2 模型和分词器
model_name = "gpt2"
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)# 定义量化模块
class QuantizedGPT2(torch.nn.Module):def __init__(self, model):super(QuantizedGPT2, self).__init__()self.quant = QuantStub()  # 用于激活值的量化self.model = modelself.dequant = DeQuantStub()  # 用于激活值的反量化def forward(self, input_ids):# 对输入的激活值进行量化quantized_inputs = self.quant(input_ids)outputs = self.model(input_ids=quantized_inputs)# 对输出进行反量化return self.dequant(outputs.logits)# 将模型包装在量化模块中
quantized_model = QuantizedGPT2(model)# 量化感知训练准备(QAT)
quantized_model.qconfig = torch.quantization.get_default_qat_qconfig('fbgemm')# 准备 QAT
quantized_model = prepare_qat(quantized_model, inplace=True)# 模拟训练(可以加载现有权重并继续训练)
# 这里使用了一些样本数据
input_text = "What is the capital of France?"
inputs = tokenizer(input_text, return_tensors="pt")['input_ids']
quantized_model.train()for _ in range(10):  # 模拟训练步骤outputs = quantized_model(inputs)loss = torch.nn.functional.cross_entropy(outputs.view(-1, outputs.size(-1)), inputs.view(-1))loss.backward()# 完成量化
quantized_model.eval()
quantized_model = convert(quantized_model)# 测试量化后的模型
with torch.no_grad():outputs = quantized_model(inputs)generated_text = tokenizer.decode(outputs[0].argmax(dim=-1), skip_special_tokens=True)
print("Generated text:", generated_text)

总结

  • GPTQ 通过梯度优化对量化误差进行最小化,适用于后训练阶段的精细量化,精度较高。
  • GGUF 采用全局统一的量化策略,具有简单高效的优点,适用于资源受限的部署场景,但可能导致某些模型层的精度损失。
  • AWQ 关注激活值的量化,通过分析激活值的分布对量化策略进行自适应调整,精度更高但计算复杂度较大。
http://www.dinnco.com/news/14657.html

相关文章:

  • 网站建设费怎么做账推广是什么意思
  • 网站的充值是怎么做的优化seo可以从以下几个方面进行
  • 网站个人简介怎么做长沙网红奶茶
  • 做网站 江门搭建网站工具
  • 做网站销售的技巧免费开发软件制作平台
  • 建设企业网站专业服务接app推广接单平台
  • 常州网站开发深圳网络推广建站
  • 网站图片不是本站的对seo有什么不好潍坊seo建站
  • 711相卡打印网址seo关键词优化最多可以添加几个词
  • 网站管理与维护方案二十条疫情优化措施
  • 兰州网站关键字优化哈尔滨最新消息
  • 一家做运动鞋的网站seo公司是什么意思
  • wordpress如何放pdfseo搜索价格
  • 安庆网站建设价格说到很多seo人员都转行了
  • 甘肃网站开发企业网站外链发布平台
  • 建材做哪些网站好竞价推广是做什么的
  • 有哪些做ppt用图片的网站腾讯效果推广
  • 怎么用大淘客做网站网站建设的意义和作用
  • 本地做网站贵免费的api接口网站
  • 海外网站建设推广优化大师人工服务电话
  • seo包括网站建设吗微信客户管理系统
  • 一个简单的网页代码带图片网站seo的内容是什么
  • 郑州服务项目网站建设公司企业qq官方下载
  • 个人网站 目的重庆网站外包
  • 放网站的图片做多大分辨率宁波正规优化seo软件
  • 徐州网站运营广告优化师发展前景
  • 满屏网站做多大尺寸seo推广是什么
  • 金融棋牌网站建设谷歌搜索引擎香港免费入口
  • 成都微信网站开发南宁seo外包服务
  • php和java做网站百度金融