当前位置: 首页 > news >正文

初中生可做兼职的网站网站统计系统

初中生可做兼职的网站,网站统计系统,软件上市公司排名,免费自制安卓app软件找往期文章包括但不限于本期文章中不懂的知识点: 个人主页:我要学编程(ಥ_ಥ)-CSDN博客 所属专栏:数据结构(Java版) 目录 堆的概念 堆的创建 时间复杂度分析: 堆的插入与删除 优先级队列 PriorityQ…

找往期文章包括但不限于本期文章中不懂的知识点:

个人主页:我要学编程(ಥ_ಥ)-CSDN博客

所属专栏:数据结构(Java版)

目录

堆的概念 

堆的创建 

时间复杂度分析:

堆的插入与删除

优先级队列

PriorityQueue的特性

PriorityQueue源码分析 

PriorityQueue常用接口介绍

构造方法:

堆的应用 


堆的概念 

如果有一个关键码的集合K = {k0,k1, k2,…,kn-1},把它的所有元素按完全二叉树的顺序存储方式存储(从上到下、从左到右)在 一个一维数组 中,并满足:Ki <= K(2i+1) 且 Ki<=K(2i+2) (Ki >= K(2i+1) 且 Ki >= K(2i+2) ) i = 0,1,2…,则称为 小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

注意:Ki <= K(2i+1) 且 Ki<=K(2i+2) 这个公式就是说明根结点的值小于等于左右孩子节点的值,即小根堆或者最小堆。与其相反就是根结点的值大于等于左右孩子节点,即大根堆或者最大堆。

堆的性质:

1、堆中某个节点的值总是不大于或不小于其父节点的值;

例如:小根堆就是根结点的值小于等于孩子节点的值,也就是说孩子节点的值大于等于根结点的值,也就对应了孩子节点不小于其父节点;反之,就是大根堆的性质了。

2、堆总是一棵完全二叉树。

因为堆是把数据按照完全二叉树的方式存储在一个一维数组中的。

3、堆的根结点总是这个一维数组中的最值,要么是最大值,要么是最小值。

如果是大根堆,按照 性质1 的推论就是:根结点的值大于等于孩子节点的值。这样一直递归下去,根结点肯定就是最大的。最坏情况就是所有结点的值全部相等。

4、堆的存储结构是一个一维数组,但是其逻辑结构是一个完全二叉树。

为什么不能是一个普通的二叉树呢?因为普通的二叉树会有空节点(空树),这样在数组中就会null元素的存在,导致了空间利用率比较低。

堆的创建 

现有一组数据 {0,1,2,3,4,5,6,7,8,9} 我们要把这组数据组织成大根堆。

public class Heap {int[] elem;int usedSize;public Heap(int k) {elem = new int[k];}public Heap() {elem = new int[10];}// 给堆初始化数据public void initHeap(int[] array) {for (int i = 0; i < array.length; i++) {elem[i] = array[i];usedSize++;}}
}

思路:大根堆的特点是根结点的值大于左右孩子节点的值。这里采用的是一种向下调整的方法。

即从最后一棵树的根结点位置开始进行调整大根堆,一直调整到整棵树的根结点满足大根堆。

// 创建大根堆
public void createHeap() {// 从最后一棵子树的根结点位置开始for (int parent = (usedSize-1-1)/2; parent >= 0 ; parent--) {// 向下调整的方法:从要调整的位置开始,到整棵树结束siftDown(parent, usedSize);}
}private void siftDown(int parent, int usedSize) {int child = parent * 2 + 1;// 只有当孩子节点在有效数据之内时,才能调整while (child < usedSize) {// 先找到左右孩子节点的最大值if (child+1 < usedSize && elem[child] < elem[child+1]) { // 得确保右孩子存在child++;}// 比较孩子节点的最大值和根结点的值if (elem[parent] < elem[child]) {// 交换swap(elem, parent, child);// 交换完成只是本级满足了大根堆的条件,但是交换下去的值不一定满足当级的大根堆条件parent = child;child = parent * 2 + 1;} else {// 满足大根堆就不需要继续调整了break;}}
}private void swap(int[] elem, int i, int j) {int tmp = elem[i];elem[i] = elem[j];elem[j] = tmp;
}

 这里可能有几个小伙伴们疑惑的地方:

1、为什么交换完成之后还要再进行向下调整判断是否需要交换?

总而言之就是一句话:参与调整的,就得再次进行判断是否符合大根堆。

2、为什么本级满足大根堆的情况后,就不需要继续往下判断是否调整?

因为我们是从下面开始调整的,如果本级满足了大根堆,那么下面的就一定也满足大根堆。因此就无需继续判断了。

时间复杂度分析:

将上面的所有结果相加,就是最终的时间复杂度。

因此向下调整建堆的时间复杂度是:O(N)。

堆的插入与删除

堆的插入:

思路:因为堆在存储上是一个数组,那么我们肯定是按照插入数组元素的方法来进行插入,即尾插。尾插完之后,还得进行判断这个新的堆是否是大根堆。因为这个的判断方式是从插入的节点开始往上判断,因此这个判断是向上调整。

    public void offer(int val) {// 插入的元素放到最后,然后其所在的树进行向上调整// 判满,扩容if (isFull()) {elem = Arrays.copyOf(elem, elem.length*2);}elem[usedSize++] = val;siftUp(usedSize-1, 0);}private boolean isFull() {return usedSize == elem.length;}private void siftUp(int child, int end) {// 因为原来是满足大根堆的,因此我们只需要判断这个新插入的元素是否也满足int parent = (child-1) / 2;while (parent >= end) {if (elem[child] > elem[parent]) {// 交换swap(elem, child, parent);child = parent;parent = (child-1) / 2;} else {// 因为原来是满足大根堆的,如果这个也满足,那么就全部满足了break;}}}

有了插入方法,我们也就可以通过插入来创建堆了。

注意:我们手动创建堆的方法是采用向下调整,而插入元素采用的是向上调整。因此,两者创建出来的堆结果会不一样,但都是大根堆。

向上调整建堆的时间复杂度分析:

与向下调整相比,向上调整还要把最后一层的节点全部调整,因此,向上调整的时间复杂度肯定是大于向下调整的。

向上调整建堆的时间复杂度O(N+logN) 。

 堆的删除:

思路:堆的删除,我们采取的方式也和数组类似,是把堆顶元素与最后一个元素交换,再进行向下调整。

    public int poll() {// 判空,抛异常if (isEmpty()) {throw new HeapIsEmptyException("堆为空异常");}int val = elem[0];swap(elem, 0, usedSize-1);siftDown(0, usedSize-1);usedSize--;return val;}private boolean isEmpty() {return usedSize == 0;}

堆的删除的时间复杂度:O(logN)。

交换完,向下调整就只调整树的高度,也就是logN。

堆的插入的时间复杂度:O(logN)。

插在最后,然后进行向上调整,也是调整树的高度。

获取堆顶元素:

    public int peek() {if (isEmpty()) {throw new HeapIsEmptyException("堆为空异常");}return elem[0];}

看到这里,我们就应该可以猜出堆和队列是有关系的,否则,不会把队列的方法名给堆。堆这种数据结构可以实现优先级队列。 

优先级队列

通过堆的性质3,我们就可以推出一个结论:如果我们每次从堆中删除数据一定删除的是优先级最高的。如果是小根堆,那么就是删除最小值,如果是大根堆,那么删除的就是最大值。即优先级最高的先被删除。这就对应了队列中的一个特殊队列:优先级队列。实际上JavaAPI中优先级队列底层就是通过堆来实现的。

PriorityQueue的特性

1、使用时必须导入PriorityQueue所在的包,即:

import java.util.PriorityQueue;

2、PriorityQueue中放置的元素必须要能够比较大小,不能插入无法比较大小的对象,否则会抛出 ClassCastException异常。

因为堆中的元素是需要可以比较大小。否则,无法判别优先级。

3、不能插入null对象,否则会抛出NullPointerException。

因为我们去比较的时候,是通过对象调用专属的比较方法,如果对象为null,就会发生空指针异常。

4、PriorityQueue默认情况下是小堆---即每次获取到的元素都是最小的元素。

5、其内部可以自动扩容,无需我们主动实现。

PriorityQueue源码分析 

PriorityQueue常用接口介绍

构造方法:

构造器功能介绍
PriorityQueue()创建一个空的优先级队列,默认容量是11
PriorityQueue(int initialCapacity)创建一个初始容量为initialCapacity的优先级队列,注意: initialCapacity不能小于1,否则会抛IllegalArgumentException异常
PriorityQueue(Collection c)用一个集合来创建优先级队列

使用:

public class Test {public static void main(String[] args) {// 创建一个优先级队列,默认容量11PriorityQueue<Integer> priorityQueue1 = new PriorityQueue<>();// 创建一个优先级队列,容量是20PriorityQueue<Integer> priorityQueue2 = new PriorityQueue<>(20);List<Integer> list = new ArrayList<>();list.add(1);list.add(2);list.add(3);list.add(4);list.add(5);// 创建一个优先级队列(容量根据list的大小来分配)PriorityQueue<Integer> priorityQueue3 = new PriorityQueue<>(list);// 长度System.out.println(priorityQueue3.size());// 小根堆System.out.println(priorityQueue3.poll());}
}

这里的“容量根据list的大小来分配”的意思是:本来的默认容量是11,如果list的长度大于11,那么就会按照2倍或者1.5倍去扩容。

插入/删除/获取优先级最高的元素 

函数名功能介绍
boolean offer(E e)插入元素e,插入成功返回true,如果e对象为空,抛出NullPointerException异常,时间复杂度O(log2 N),注意:空间不够时候会进行扩容
E peek()获取优先级最高的元素,如果优先级队列为空,返回null
E poll ()移除优先级最高的元素并返回,如果优先级队列为空,返回null
int size()获取有效元素的个数
void clear()清空
boolean isEmpty()检测优先级队列是否为空,空返回true

堆的应用 

1、PriorityQueue的实现。

2、堆排序。

不同的顺序,建立不同的堆,但是一定是后面的元素先有序,再是前面的元素有序。

因此我们就可以知道:如果是从小到大排序,那么就要建大根堆;反之,则是建小根堆。

因为 如果是从小到大排序,且后面的元素先有序,那么后面的元素只能是最大的,因此建立大根堆的话,堆顶元素一定是最大的。这时,我们只需把堆顶元素和最后一个元素进行交换,然后再进行向下调整,直至调整到整棵树的根节点。

代码实现:

    public void heapSort() {int j = 0;for (int i = usedSize-1; i > 0; i--) {swap(elem,i,j);siftDown(0, i);}}

3、Top-k问题 

TOP-K问题:即求数据集合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大,且K都比较小。

例如:全球前500强的企业。

对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:

如果是要找前K个最小的元素,将前K个元素建成大根堆,然后再去遍历后N-K个元素,遇到小于堆顶元素的就交换,遍历完成后剩下的堆中元素就是前K个最小的。

练习:面试题 17.14.最小K的个数

题目: 

设计一个算法,找出数组中最小的k个数。以任意顺序返回这k个数均可。

示例:

输入: arr = [1,3,5,7,2,4,6,8], k = 4
输出: [1,2,3,4]

提示:

  • 0 <= len(arr) <= 100000
  • 0 <= k <= min(100000, len(arr))

思路一:直接排序,然后遍历前K个即可。

    public int[] smallestK(int[] arr, int k) {// 调用JavaAPI提供的方法才行,自己实现的方法会超出时间限制Arrays.sort(arr); // 默认是从小到大排序int[] ret = new int[k];for (int i = 0; i < k; i++) {ret[i] = arr[i];}return ret;}

思路二:将N个元素建成小根堆,然后每次取堆顶元素,取K次即可。

    public int[] smallestK(int[] arr, int k) {PriorityQueue<Integer> priorityQueue = new PriorityQueue<>();for (int i = 0; i < arr.length; i++) {priorityQueue.offer(arr[i]);}// 上面是建成的小根堆int[] ret = new int[k];for (int i = 0; i < k; i++) {ret[i] = priorityQueue.poll();}return ret;}

思路三:取前K个元素建成大根堆,然后再遍历剩下的元素,如果小于堆顶元素,则交换。

class Solution {public int[] smallestK(int[] arr, int k) {int[] ret = new int[k];if (k == 0 || arr == null) {return ret;}PriorityQueue<Integer> priorityQueue = new PriorityQueue<>(k, new Incompare());for (int i = 0; i < k; i++) {priorityQueue.offer(arr[i]);}for (int i = k; i < arr.length; i++) {if (priorityQueue.peek() > arr[i]) {priorityQueue.poll();priorityQueue.offer(arr[i]);}}for (int i = 0; i < k; i++) {ret[i] = priorityQueue.poll();}return ret;}
}// 创建新的比较器
class Incompare implements Comparator<Integer> {@Overridepublic int compare(Integer o1, Integer o2) {return o2.compareTo(o1);}
}

好啦!本期 数据结构之探索“堆”的奥秘 的学习之旅就到此结束啦!我们下一期再一起学习吧!

http://www.dinnco.com/news/17595.html

相关文章:

  • wordpress store企业seo的措施有哪些
  • 合肥市城乡建设委员会网站主页导航网站怎么推广
  • 公司简介宣传seo是哪个国家
  • 工农区网站建设福州百度快照优化
  • 网站备案注销查询淘宝站外引流推广方法
  • 怎么做五个页面网站竞价托管推广哪家好
  • 西安企业网站备案一般得多少天青岛关键词排名哪家好
  • 网站后台扫描插件seo日常工作都做什么的
  • 网站优化具体是怎么做的好网站制作公司
  • 深圳企业做网站站长网站优化公司
  • 淄博网站建设多少钱每天4元代发广告
  • 北京建设委网站营销策划方案范文
  • web网站开发公司百度seo收录软件
  • 自己如何在家做网站短视频营销的优势
  • 微网站建设难不难十大嵌入式培训机构
  • fireworks做网站江西优化中心
  • dw做网站步骤武汉全网推广
  • 编程教学网站推荐新网站推广最直接的方法
  • 自己做的网站如何包装自助发稿
  • 黑龙江网站建站建设北京优化核酸检测
  • 阿里云服务器做网站需要备案关键词排名推广软件
  • 返利网 网站建设费用推广普通话内容100字
  • 帝国cms网站地址百度推广官网网站
  • 网站建设用苹果电脑珠海网站建设优化
  • 微网站摇一摇北京建站工作室
  • 山西建站公司关键词推广效果分析
  • 杭州做网站设计公司抖音广告代运营
  • 小米路由器3做网站潍坊seo排名
  • 个人网站的首页舆情分析网站免费
  • 做cpa没有网站怎么办北京网站建设制作公司