当前位置: 首页 > news >正文

重庆企业网站推广方案微信广告平台

重庆企业网站推广方案,微信广告平台,火车头采集发布wordpress,网站广告源码学习笔记:机器学习在癌症分子亚型分类中的应用——Cancer Cell 研究解析 1. 文章基本信息 标题:Classification of non-TCGA cancer samples to TCGA molecular subtypes using machine learning发表期刊:Cancer Cell发表时间:20…

学习笔记:机器学习在癌症分子亚型分类中的应用——Cancer Cell 研究解析


在这里插入图片描述

1. 文章基本信息

  • 标题:Classification of non-TCGA cancer samples to TCGA molecular subtypes using machine learning
  • 发表期刊:Cancer Cell
  • 发表时间:2025 年,第 53 卷,第 2 期
  • 研究目标
    • 开发机器学习分类器,用于将非 TCGA 样本映射到TCGA 定义的分子亚型
    • 支持多组学数据整合(mRNA、DNA 甲基化、CNV、突变、miRNA),提高分类准确度。
    • 提供标准化工具(Docker 容器化),使研究和临床应用更便捷。

2. 文章的主要行文思路

(1) 引言(Introduction)

  • 介绍癌症传统分类方法(基于组织学和解剖学分类)的局限性。
  • 介绍 TCGA 数据集在癌症亚型研究中的重要性。
  • 说明当前分子亚型分类方法在非 TCGA 样本上的应用挑战。
  • 提出研究目标:使用机器学习方法开发分类器,将非 TCGA 样本归类到 TCGA 定义的亚型

(2) 方法(Methods)

  • 数据来源:使用 TCGA 的多组学数据,包括 mRNA、DNA 甲基化、CNV、miRNA、突变数据。
  • 机器学习方法
    • 使用五种 ML 方法(AKLIMATE、CloudForest、SKGrid、JADBio、subSCOPE)。
    • 训练 8,791 个 TCGA 样本,涵盖 26 种癌症队列和 106 个分子亚型。
    • 使用交叉验证评估模型性能,最终选出 737 个最优分类器。
  • 外部验证
    • 采用 METABRIC 和 AURORA 乳腺癌数据集,测试模型的泛化能力。

在这里插入图片描述

(3) 结果(Results)

  • 分类模型构建与性能评估

    • 统计不同数据类型对分类的贡献。
    • 发现 mRNA 在大多数癌症亚型分类中起主导作用。
      在这里插入图片描述
  • 外部数据集验证

    • 评估不同 ML 方法在不同测序平台(RNA-seq vs. 微阵列)上的稳健性。
  • 模型泛化能力

    • 发现 70 个样本足以预测分类器的最终性能。
    • 研究不同癌症亚型对单一数据类型的依赖程度。

(4) 讨论(Discussion)

  • TCGA 亚型分类的临床应用潜力
    • 预测新样本时,可提供标准化的癌症分子亚型信息。
    • 未来可用于开发简化的癌症检测面板。

在这里插入图片描述

  • 研究局限性
    • TCGA 数据可能未涵盖所有癌症亚型。
    • 不同测序平台可能影响模型泛化能力。

(5) 结论(Conclusion)

  • 研究提供了一个通用的分类框架,可用于非 TCGA 样本的 TCGA 亚型分类
  • 公开 737 个高性能分类器,可用于癌症检测和精准医学研究

3. 文章的主要贡献

(1) 机器学习驱动的癌症分型

  • 使用 5 种机器学习方法 训练 TCGA 数据:
    • AKLIMATE
    • CloudForest
    • SKGrid
    • JADBio
    • subSCOPE
  • 训练 412,585 个分类模型,最终筛选出 737 个最优模型
  • 提供 Docker 版本,保证可复现性和易用性

(2) 多组学数据整合

  • 研究分析了不同数据类型的贡献
    • mRNA 对大多数癌症亚型分类最关键。
    • DNA 甲基化 在 LGG、GBM 等脑肿瘤分类中尤为重要。
    • 突变数据(Mutations) 适用于黑色素瘤(SKCM)。
    • 整合多种组学数据可提高分类准确度

(3) 临床应用价值

  • 提供 TCGA 亚型分类,提高癌症精准医学能力
    • 不同 TCGA 亚型的患者具有不同的预后和治疗策略
    • 例如:CMS1 结直肠癌(高 MSI-H)对 PD-1 免疫治疗敏感,而 CMS4 免疫排斥明显。
  • 帮助医生和研究人员在新数据集中分类样本,指导精准治疗。

(4) 公开可用的工具

  • 提供 Docker 容器,简化安装和使用
  • GitHub 代码公开,提高可复现性

https://github.com/NCICCGPO/gdan-tmp-models


3. 作者的主要单位

单位机构类型研究重点是否与临床相关
Oregon Health & Science University (OHSU)医学中心癌症基因组学、精准医学✅ 高度相关
University of California, San Francisco (UCSF)医学中心肿瘤学、精准医学✅ 高度相关
Dana-Farber Cancer Institute (DFCI)癌症中心肿瘤学、临床研究✅ 高度相关
MD Anderson Cancer Center (UTMDACC)癌症医院癌症治疗、精准医学✅ 高度相关
National Cancer Institute (NCI)政府研究机构癌症基因组、精准医学✅ 高度相关
The Broad Institute (MIT & Harvard)研究机构癌症基因组、药物开发✅ 高度相关
University of California, Santa Cruz (UCSC)大学计算生物学、生物信息学❌ 主要是计算研究
King Abdullah University of Science and Technology (KAUST)大学计算机科学、机器学习❌ 主要是算法,不直接涉及临床

📌 结论

  • 该研究团队涵盖了癌症精准医学、基因组学、计算生物学、机器学习等多个领域,保证了该研究的高临床相关性和计算分析的前沿性

4. 如何使用 Docker 进行数据处理

(1) 安装 Docker

首先,确保服务器已安装 Docker:

docker --version  # 确认安装

如果未安装,可以运行以下命令安装:

sudo apt update
sudo apt install docker.io -y
sudo systemctl start docker
sudo systemctl enable docker

(2) 克隆 GitHub 仓库

git clone https://github.com/NCICCGPO/gdan-tmp-models.git
cd gdan-tmp-models

(3) 拉取 Docker 镜像

docker pull nciccpo/gdan-tmp-aklimate:latest
docker pull nciccpo/gdan-tmp-cloudforest:latest
docker pull nciccpo/gdan-tmp-skgrid:latest
docker pull nciccpo/gdan-tmp-jadbio:latest
docker pull nciccpo/gdan-tmp-subscope:latest

(4) 准备输入数据

mkdir -p ~/gdan-input
mkdir -p ~/gdan-config

将**RNA-seq 表达数据(FPKM/TPM)**放入 ~/gdan-input/ 目录,并创建 YAML 配置文件 ~/gdan-config/config.yml

model: aklimate
input_data:mRNA: /data/mRNA_expression.csv
output:results: /data/prediction_results.csv

(5) 运行 Docker 进行 TCGA 亚型预测

docker run --rm --cpus=64 \-v ~/gdan-input:/data \-v ~/gdan-config:/config \nciccpo/gdan-tmp-aklimate:latest /config/config.yml

📌 参数解释

  • --cpus=64:使用 64 核 CPU(可根据服务器性能调整)。
  • -v ~/gdan-input:/data:映射输入数据目录到 /data
  • -v ~/gdan-config:/config:映射 YAML 配置文件目录到 /config

(6) 查看预测结果

ls ~/gdan-input
cat ~/gdan-input/prediction_results.txt

或者:

import pandas as pd
df = pd.read_csv("~/gdan-input/prediction_results.csv")
print(df.head())

5. 结果解读

示例结果:

Sample_ID    Predicted_TCGA_Subtype    Confidence_Score
Sample_001   BRCA_LuminalA             0.95
Sample_002   LGG_IDH_Mutant             0.87
Sample_003   SKCM_BRAF_Mutant           0.92

📌 解读

  • Predicted_TCGA_Subtype:模型预测的 TCGA 亚型
  • Confidence_Score(0-1):置信度,越高表示分类越可靠
  • 如果置信度低(如 <0.7),说明该样本可能更偏向其他亚型或需要额外数据支持(如 DNA 甲基化)。

6. 结论

该研究基于 TCGA 数据,提供了精准的癌症亚型分类工具
支持 RNA-seq(mRNA)数据,适用于临床研究和精准医学
使用 Docker 容器化,保证可复现性,提供 737 个高性能分类器
有助于个性化治疗,如免疫治疗和靶向治疗策略的选择

📌 下一步

  • 尝试用自己的 RNA-seq 数据跑一次分析
  • 如果分类结果置信度较低,可考虑添加 DNA 甲基化或突变数据
  • 如有问题,可以查看 Docker 日志:
    docker logs <CONTAINER_ID>
    
http://www.dinnco.com/news/21750.html

相关文章:

  • asp网站图片不显示竞价服务托管价格
  • 泰安人才信息网官网seo岗位有哪些
  • 企业网站推广的实验内容临沂做网站推广的公司
  • 专业做医院网站建设新手怎么引流推广推广引流
  • 中国b2b网站前100名女孩短期技能培训班
  • 网站建设分类如何提高网站排名
  • 潍坊网站建设 马电子商务seo
  • 沈阳餐饮网站建设草根seo视频大全网站
  • 莱特币做空国外网站百度seo排名优化公司哪家好
  • 网站建设的目录浏览hyein seo
  • wp在本地做的网站 上传网易企业邮箱
  • wordpress about meseo实战密码在线阅读
  • 手机wap网站免费制作在线网络培训平台
  • 网站建设维护概括总结电商培训机构哪家强
  • 白银价格seo排名软件怎么做
  • 找谁做网站优化郑州网站建设制作
  • 做搜狗手机网站持续优化完善防控措施
  • 佛系汉化组.wordpress com网站优化员seo招聘
  • 苏州做网站的公司排名经典软文广告案例
  • 嘉兴企业网站开发百度pc网页版登录入口
  • 南昌建设人才网站合肥网站推广优化
  • 做家务的男人免费观看网站广告投放平台公司
  • 重庆seo网站策划怎么做好销售
  • 途牛旅游网站建设目的百度公司地址
  • 网站怎样多语言做营销型网站哪家好
  • 网站建设前期策划方案百度官网下载安装
  • 电子商务网站开发成本网店运营与推广
  • 怎么在网站里做网页企业网络营销青岛
  • 南京品牌网站开发模板郑州网站设计
  • 做那个免费视频网站实体店营销方案