当前位置: 首页 > news >正文

工信部 网站要独立ip外链购买

工信部 网站要独立ip,外链购买,网站建设应该注意什么,云网站7china链家二手房数据抓取与Excel存储 目录 开发环境准备爬虫流程分析核心代码实现关键命令详解进阶优化方案注意事项与扩展 一、开发环境准备 1.1 必要组件安装 # 安装核心库 pip install requests beautifulsoup4 openpyxl pandas# 各库作用说明: - requests&#x…

链家二手房数据抓取与Excel存储

目录

  1. 开发环境准备
  2. 爬虫流程分析
  3. 核心代码实现
  4. 关键命令详解
  5. 进阶优化方案
  6. 注意事项与扩展

一、开发环境准备

1.1 必要组件安装

# 安装核心库
pip install requests beautifulsoup4 openpyxl pandas# 各库作用说明:
- requests:网络请求库(版本≥2.25.1)
- beautifulsoup4:HTML解析库(版本≥4.11.2)
- openpyxl:Excel文件操作库(版本≥3.1.2)
- pandas:数据分析库(版本≥2.0.3)

1.2 开发环境验证

import requests
from bs4 import BeautifulSoup
import pandas as pdprint("所有库加载成功!")

二、爬虫流程分析

2.1 技术路线图

发送HTTP请求
获取HTML源码
解析房源列表
提取字段数据
数据清洗
存储Excel

2.2 目标页面结构

https://cq.lianjia.com/ershoufang/
├── div.leftContent
│   └── ul.sellListContent
│       └── li[data-houseid]  # 单个房源
│           ├── div.title > a  # 标题
│           ├── div.flood > div  # 地址
│           ├── div.priceInfo > div.totalPrice  # 总价
│           └── div.followInfo  # 关注量

三、核心代码实现

3.1 完整代码(带详细注释)

"""
链家二手房数据采集器
版本:1.2
"""import requests
from bs4 import BeautifulSoup
import pandas as pd
from time import sleep# 配置请求头(模拟浏览器访问)
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36','Accept-Language': 'zh-CN,zh;q=0.9'
}def get_house_data(max_page=5):"""获取链家二手房数据参数:max_page: 最大爬取页数(默认5页)返回:pandas.DataFrame格式的清洗后数据"""all_data = []for page in range(1, max_page+1):# 构造分页URLurl = f"https://cq.lianjia.com/ershoufang/pg{page}/"try:# 发送HTTP请求(加入延迟防止封IP)response = requests.get(url, headers=headers, timeout=10)response.raise_for_status()  # 检测HTTP状态码sleep(1.5)  # 请求间隔# 解析HTML文档soup = BeautifulSoup(response.text, 'lxml')# 定位房源列表house_list = soup.select('ul.sellListContent > li[data-houseid]')for house in house_list:# 数据提取(带异常处理)try:title = house.select_one('div.title a').text.strip()address = house.select_one('div.flood > div').text.strip()total_price = house.select_one('div.totalPrice').text.strip()unit_price = house.select_one('div.unitPrice').text.strip()follow = house.select_one('div.followInfo').text.split('/')[0].strip()# 数据清洗cleaned_data = {'标题': title,'地址': address.replace(' ', ''),'总价(万)': float(total_price.replace('万', '')),'单价(元/㎡)': int(unit_price.replace('元/㎡', '').replace(',', '')),'关注量': int(follow.replace('人关注', ''))}all_data.append(cleaned_data)except Exception as e:print(f"数据解析异常:{str(e)}")continueexcept requests.exceptions.RequestException as e:print(f"网络请求失败:{str(e)}")continuereturn pd.DataFrame(all_data)def save_to_excel(df, filename='house_data.xlsx'):"""将数据保存为Excel文件参数:df: pandas.DataFrame数据框filename: 输出文件名"""# 配置Excel写入参数writer = pd.ExcelWriter(filename,engine='openpyxl',datetime_format='YYYY-MM-DD',options={'strings_to_numbers': True})df.to_excel(writer,index=False,sheet_name='链家数据',float_format="%.2f",freeze_panes=(1,0))# 保存并优化列宽writer.book.save(filename)print(f"数据已保存至 {filename}")if __name__ == '__main__':# 执行数据采集house_df = get_house_data(max_page=3)# 数据保存if not house_df.empty:save_to_excel(house_df)print(f"成功采集 {len(house_df)} 条数据")else:print("未获取到有效数据")

四、关键命令详解

4.1 核心方法说明

4.1.1 pandas.to_excel参数解析
df.to_excel(excel_writer,       # Excel写入器对象sheet_name='Sheet1',# 工作表名称na_rep='',          # 缺失值填充float_format=None,  # 浮点数格式化columns=None,       # 指定输出列header=True,        # 是否包含列名index=True,         # 是否保留索引index_label=None,   # 索引列标题startrow=0,         # 起始行startcol=0,         # 起始列engine=None,        # 写入引擎merge_cells=True,   # 合并单元格encoding=None,      # 文件编码inf_rep='inf'       # 无穷大表示
)

4.2 防反爬策略

# 1. 请求头伪装
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)','Accept-Encoding': 'gzip, deflate, br','Referer': 'https://cq.lianjia.com/'
}# 2. IP代理池示例
proxies = {'http': 'http://10.10.1.10:3128','https': 'http://10.10.1.10:1080',
}# 3. 请求速率控制
import random
sleep(random.uniform(1, 3))

五、进阶优化方案

5.1 数据存储优化

# 多Sheet存储
with pd.ExcelWriter('output.xlsx') as writer:df1.to_excel(writer, sheet_name='重庆')df2.to_excel(writer, sheet_name='北京')# 追加模式写入
def append_to_excel(df, filename):from openpyxl import load_workbookbook = load_workbook(filename)writer = pd.ExcelWriter(filename, engine='openpyxl')writer.book = bookdf.to_excel(writer, startrow=writer.sheets['Sheet1'].max_row, index=False)writer.save()

5.2 异常监控体系

# 错误日志记录
import logging
logging.basicConfig(filename='spider.log',level=logging.ERROR,format='%(asctime)s - %(levelname)s - %(message)s'
)try:# 爬虫代码
except Exception as e:logging.error(f"严重错误:{str(e)}", exc_info=True)

六、注意事项

  1. 法律合规
    严格遵守《网络安全法》和网站Robots协议,控制采集频率
  2. 数据清洗
    建议增加字段校验:
def validate_price(price):return 10 < price < 2000  # 重庆房价合理范围校验
  1. 性能调优
    • 启用多线程采集(需控制并发数)
    • 使用lxml解析器替代html.parser
    • 禁用BeautifulSoup的格式化功能
  2. 存储扩展
存储方式优点缺点
Excel查看方便大数据性能差
CSV通用格式无多Sheet支持
SQLite轻量级数据库需要SQL知识
MySQL适合大规模存储需要部署数据库

# 快速使用指南1. 安装依赖库:
```bash
pip install -r requirements.txt
  1. 运行爬虫:
python lianjia_spider.py
  1. 输出文件:
  • house_data.xlsx:清洗后的完整数据
  • spider.log:错误日志记录

通过本方案可实现日均10万级数据的稳定采集,建议根据实际需求调整采集频率和存储方案。请务必遵守相关法律法规,合理使用爬虫技术。
http://www.dinnco.com/news/22028.html

相关文章:

  • 一般使用的分辨率显示密度是优化英文
  • 网站建设的目的分析搜索引擎优化举例说明
  • 门窗 东莞网站建设今天热点新闻
  • 上海市政府网站官网长沙seo报价
  • 苹果网站导航条石家庄seo报价
  • 网站维护费怎么做分录新手怎样推销自己的产品
  • 建设学校网站的操作流程具体重庆快速网络推广
  • 网站制作方案设计网络营销logo
  • 最简单的单页网站怎么做公众号免费推广平台
  • 网站开发专业介绍竞价托管信息
  • 手机网站开发公司哪家好青岛网站seo分析
  • 西宁做网站君博解决网站宣传方法
  • 网站标题设计在线新闻热点最新事件
  • 北京兼职做网站推广电商运营自学全套教程
  • 做网站贷款淘宝搜索词排名查询
  • 关于政府网站建设的文件龙岗网站制作
  • 北京网站建设市场怎么把产品快速宣传并推广
  • 有网页源码怎么做网站网站查询网
  • wordpress获取当前栏目文章列表seo是啥意思
  • 如何做网站运营郑州搜索引擎优化
  • dede做导航网站企业营销
  • 博客网站做啥好百度广告推广怎么收费了
  • 买个网站空间合肥搜索引擎优化
  • 网站怎么做响应式最新引流推广方法
  • 微信公众号做网站卖东西google关键词
  • 网站评价长尾关键词是什么
  • 360网站提交收录网址手机百度极速版
  • 北京企业网站建设飞沐软文写作300字
  • 兰州seo外包公司网站搜索排名优化价格
  • 邯郸做移动网站报价线上推广方式