当前位置: 首页 > news >正文

非小号是根据国外哪个网站做的seo就业前景

非小号是根据国外哪个网站做的,seo就业前景,购物网站 英文介绍,010网站建设目标 用paddlepaddle来重写之前那个手写的梯度下降方案,简化内容 流程 实际上就做了几个事: 数据准备:将一个批次的数据先转换成nparray格式,再转换成Tensor格式前向计算:将一个批次的样本数据灌入网络中&#xff…

目标

用paddlepaddle来重写之前那个手写的梯度下降方案,简化内容

流程

实际上就做了几个事:

  1. 数据准备:将一个批次的数据先转换成nparray格式,再转换成Tensor格式
  2. 前向计算:将一个批次的样本数据灌入网络中,计算出结果
  3. 计算损失函数:以前向计算的结果和真是房价作为输入,通过算是函数sqare_error_cost计算出损失函数。
  4. 反向传播:执行梯度反向传播backward函数,即从后到前逐层计算每一层的梯度,并根据设置的优化算法更新参数(opt.step函数)。

paddlepaddle做了什么?

paddle库替你做了前向计算和损失函数计算,以及反向传播相关的计算函数

数据准备

这部分代码和之前一样,读取数据是独立的

点击查看代码
#数据划分函数不依赖库,还是自己读
def load_data():# 从文件导入数据datafile = './work/housing.data'data = np.fromfile(datafile, sep=' ', dtype=np.float32)# 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV' ]feature_num = len(feature_names)# 将原始数据进行Reshape,变成[N, 14]这样的形状data = data.reshape([data.shape[0] // feature_num, feature_num])# 将原数据集拆分成训练集和测试集# 这里使用80%的数据做训练,20%的数据做测试# 测试集和训练集必须是没有交集的ratio = 0.8offset = int(data.shape[0] * ratio)training_data = data[:offset]# 计算train数据集的最大值,最小值maximums, minimums = training_data.max(axis=0), training_data.min(axis=0)# 记录数据的归一化参数,在预测时对数据做归一化global max_valuesglobal min_valuesmax_values = maximumsmin_values = minimums# 对数据进行归一化处理for i in range(feature_num):data[:, i] = (data[:, i] - min_values[i]) / (maximums[i] - minimums[i])# 训练集和测试集的划分比例training_data = data[:offset]test_data = data[offset:]return training_data, test_data

定义一个依赖paddle库的类

点击查看代码
class Regressor(paddle.nn.Layer):#self代表对象自身def __init__(self):#初始化父类的参数super(Regressor, self).__init__()#定义一层全连接层,输入维度是13,输出维度是1self.fc = Linear(in_features=13, out_features=1)#网络的前向计算函数def forward(self, inputs):x = self.fc(inputs)return x

在上面这个类中,不论是前向计算还是初始化,都是继承了这个paddle.nn.Layer类,用其内部的成员函数执行的

代码

我们定义一个循环来执行这个流程,如下:

点击查看代码
EPOCH_NUM = 10   # 设置外层循环次数
BATCH_SIZE = 10  # 设置batch大小# 定义外层循环
for epoch_id in range(EPOCH_NUM):# 在每轮迭代开始之前,将训练数据的顺序随机的打乱np.random.shuffle(training_data)# 将训练数据进行拆分,每个batch包含10条数据mini_batches = [training_data[k:k+BATCH_SIZE] for k in range(0, len(training_data), BATCH_SIZE)]# 定义内层循环for iter_id, mini_batch in enumerate(mini_batches):x = np.array(mini_batch[:, :-1]) # 获得当前批次训练数据y = np.array(mini_batch[:, -1:]) # 获得当前批次训练标签(真实房价)# 将numpy数据转为飞桨动态图tensor的格式house_features = paddle.to_tensor(x)prices = paddle.to_tensor(y)# 前向计算predicts = model(house_features)# 计算损失loss = F.square_error_cost(predicts, label=prices)avg_loss = paddle.mean(loss)if iter_id%20==0:print("epoch: {}".format(epoch_id))print("iter: {}".format(str(iter_id)))print("loss is : {}".format(float(avg_loss)))# 反向传播,计算每层参数的梯度值avg_loss.backward()# 更新参数,根据设置好的学习率迭代一步opt.step()# 清空梯度变量,以备下一轮计算opt.clear_grad()

保存模型

在梯度下降得到一个模型了之后,可以把这个神经网络模型保存下来

点击查看代码
paddle.save(model.state_dict(), 'LR_model.pdparams')
print("模型保存成功,模型参数保存在LR_model.pdparams中")

读取模型

在启动模型之前,当然可以读取这样一个模型:

点击查看代码
def load_one_example():# 从上边已加载的测试集中,随机选择一条作为测试数据idx = np.random.randint(0, test_data.shape[0])idx = -10one_data, label = test_data[idx, :-1], test_data[idx, -1]# 修改该条数据shape为[1,13]one_data =  one_data.reshape([1,-1])return one_data, label        # 参数为保存模型参数的文件地址
#读取保存模型
model_dict = paddle.load('LR_model.pdparams')
model.load_dict(model_dict) #读取模型文件
model.eval()	#转变为预测模式

尝试进行预测

点击查看代码
# 参数为数据集的文件地址
one_data, label = load_one_example()
# 将数据转为动态图的variable格式 
one_data = paddle.to_tensor(one_data)
#model是定义的模型,这个model(one_data)实际上是对one_Data进行了一次前向传播
predict = model(one_data)# 因为这个predict的值实际上是做了归一化处理的,所以这里需要进行反归一化处理
predict = predict * (max_values[-1] - min_values[-1]) + min_values[-1]
# 对label数据做反归一化处理
label = label * (max_values[-1] - min_values[-1]) + min_values[-1]#模型预测值是22.72234,,实际值是19.700000762939453
print("Inference result is {}, the corresponding label is {}".format(predict.numpy(), label))
http://www.dinnco.com/news/23695.html

相关文章:

  • c 手机网站开发百度论坛首页
  • 佳木斯做网站公司网站优化
  • 福建建设银行官方网站小程序开发文档
  • 自己做的网站响应速度慢软文范例大全1000字
  • 设计网站猪八戒关键词首页排名代做
  • 创造与魔法官方网站一起做喜欢的事短视频seo营销系统
  • 网站关键词排名下降项目网
  • 国家卫生计生委能力建设和继续教育中心网站推广优化网站排名教程
  • 重庆工程造价信息官网成都seo技术经理
  • 怎样新建网站郑州网站设计
  • 新建的网站 找不到了百度指数教程
  • 惠东县住房和城乡规划建设局网站百度上搜索关键词如何在首页
  • 重庆博达建设集团股份有限公司网站百度提交网站
  • 广州做网站公司哪家好网络营销能干什么工作
  • 福州seo推广优化泉州百度关键词优化
  • 做网站怎么宣传青岛网站seo公司
  • 网站上的在线客服怎么做的百度的特点和优势
  • 长沙市城市建设档案馆网站希爱力双效片的作用与功效
  • wordpress超链接无下划线汕头网站优化
  • 英德网站seo九幺seo工具
  • python做网站毕业设计chrome官方下载
  • 手机网站需要域名吗推广策划方案范文
  • 网站建设的资料的准备aso优化师
  • web网站开发公司电商培训内容有哪些
  • 公安机关备案 网站百度关键词排名提升工具
  • 网站设计流程图营销推广是什么意思
  • 如何编辑做网站站长工具黄
  • seo快速排名软件易下拉霸屏seo如何快速出排名
  • 如何把网站做成app搜索引擎优化的内容
  • 小程序开发制作平台源码开封网站seo