当前位置: 首页 > news >正文

营销型网站建设xywlcn武汉seo网站排名

营销型网站建设xywlcn,武汉seo网站排名,软件工程的八个步骤,女生做a视频的网站是什多少来源:力扣(LeetCode) 描述: 给你一个由若干 0 和 1 组成的二维网格 grid,请你找出边界全部由 1 组成的最大 正方形 子网格,并返回该子网格中的元素数量。如果不存在,则返回 0。 示例 1&#…

来源:力扣(LeetCode)

描述:

给你一个由若干 01 组成的二维网格 grid,请你找出边界全部由 1 组成的最大 正方形 子网格,并返回该子网格中的元素数量。如果不存在,则返回 0

示例 1:

输入:grid = [[1,1,1],[1,0,1],[1,1,1]]
输出:9

示例 2:

输入:grid = [[1,1,0,0]]
输出:1

提示:

  • 1 <= grid.length <= 100
  • 1 <= grid[0].length <= 100
  • grid[i][j] 为 0 或 1

方法:动态规划

思路与算法

我们假设以 (x, y) 为右下方顶点的最大的正方形边长为 l,此时正方形的四个顶点分别为 (x − l + 1, y − l + 1), (x, y − l + 1), (x − l + 1, y), (x, y),此时需要保证正方形的四条边上的数字均为 1。我们设 left[x][y] 表示以 (x, y) 为起点左侧连续 1 的最大数目,right[x][y] 表示以 (x, y) 为起点右侧连续 1 的最大数目,up[x][y] 表示从 (x, y) 为起点上方连续 1 的最大数目,down[x][y] 表示以 (x, y) 为起点下方连续 1 的最大数目。此时正方形的四条边中以四个顶点为起点的连续 1 的数目分别为:上侧边中以 (x − l + 1, y − l + 1) 为起点连续 1 数目为 right[x − l + 1][y − l + 1],左侧边中以 (x − l + 1, y − l + 1) 为起点连续 1 的数目为 down[x − l + 1][y − l + 1],右侧边中以 (x, y) 为起点连续 1 的数目为 up[x][y],下侧边中以 (x,y) 为起点连续 1 的数目为 left[x][y]。

如果连续 1 的数目大于等于 l,则构成一条「合法」的边,如果正方形的四条边均「合法」,此时一定可以构成边界全为 1 且边长为 l 的正方形。
1

我们只需要求出以 (x, y) 为起点四个方向上连续 1 的数目,枚举边长 l 即可求出以 (x, y) 为右下顶点构成的边界为 1 的最大正方形,此时我们可以求出矩阵中边界为 1 的最大正方形。

本题即转换为求矩阵中任意位置 (x, y) 为起点上下左右四个方向连续 1 的最大数目,此时可以利用动态规划:

  • 如果当前 grid[x][x] = 0 此时,四个方向的连续 1 的长度均为 0;

  • 如果当前 grid[x][x] = 1 此时,四个方向的连续 1 的最大数目分别等于四个方向上前一个位置的最大数目加 1,计算公式如下:

2

在实际计算过程中我们可以进行优化,不必全部计算出四个方向上的最大连续 1 的数目,可以进行如下优化:

只需要求出每个位置 (x, y) 为起点左侧连续 1 的最大数目 left[x][y] 与上方连续 1 的最大数目 up[x][y] 即可。假设当前正方形的边长为 l,此时只需检测 up[x][y], left[x][y], left[x − l + 1][y], up[x][y − l + 1] 是否均满足大于等于 l 即可检测正方形的合法性。

枚举正方形的边长时可以从大到小进行枚举,我们已经知道以 (x, y) 为起点左侧连续 1 的最大数目 left[x][y] 与上方连续 1 的最大数目 up[x][y],此时能够成正方形的边长的最大值一定不会超过二者中的最小值 min(left[x][y], up[x][y]),从大到小枚举直到可以构成“合法”的正方形即可。

代码:

class Solution {
public:int largest1BorderedSquare(vector<vector<int>>& grid) {int m = grid.size(), n = grid[0].size();vector<vector<int>> left(m + 1, vector<int>(n + 1));vector<vector<int>> up(m + 1, vector<int>(n + 1));int maxBorder = 0;for (int i = 1; i <= m; i++) {for (int j = 1; j <= n; j++) {if (grid[i - 1][j - 1] == 1) {left[i][j] = left[i][j - 1] + 1;up[i][j] = up[i - 1][j] + 1;int border = min(left[i][j], up[i][j]);while (left[i - border + 1][j] < border || up[i][j - border + 1] < border) {border--;}maxBorder = max(maxBorder, border);}}}return maxBorder * maxBorder;}
};

执行用时:8 ms, 在所有 C++ 提交中击败了100.00%的用户
内存消耗:11.4 MB, 在所有 C++ 提交中击败了54.29%的用户
复杂度分析
时间复杂度:O(m × n × min(m, n)),其中 m 表示矩阵的行数,n 表示矩阵的列数。
空间复杂度:O(m × n),其中 m 表示矩阵的行数,n 表示矩阵的列数。需要保存矩阵中每个位置的最长连续 1 的数目,需要的空间为 O(m × n)。
author:LeetCode-Solution

http://www.dinnco.com/news/34827.html

相关文章:

  • 企业静态网站源码西安seo优化培训机构
  • 网页设计难还是网站建设南网络推广招聘
  • 便宜虚拟主机做网站备份网站推广内容
  • c 做网站开发怎么在百度发布免费广告
  • 做优化的网站电话网络营销的目的是什么
  • 网站开发与建设的原则seo站长工具 论坛
  • 游戏网站规划方案台州seo
  • 中移电子商务有限公司湖南关键词优化推荐
  • 上海疫情最新公布拼多多seo搜索优化
  • web做花店网站页面营销型网站建设需要多少钱
  • 一般建设一个网站多少钱网店代运营公司靠谱吗
  • 易旅游网站建设网站建设方案
  • 谷歌广告优化湖南网站seo公司
  • 广东省住房和城乡建设厅网站2022网站快速收录技术
  • 怎么做乞讨网站旅游网站网页设计
  • 网站的后台怎么做调查问卷子域名网址查询
  • apmserv搭建网站2022年新闻摘抄简短
  • 视频直播网站开发运营步骤网站推广的基本方法为
  • 乌克兰网站后缀深圳搜索引擎优化收费
  • 重庆智能网站建设多少钱优化营商环境条例
  • 做网站什么空间比较好有免费做网站的吗
  • 佛山学校网站建设如何打百度人工电话
  • 互动平台有效学时广州中小企业seo推广运营
  • 网站建设审批考研培训班集训营
  • 做美股的数据网站宁波网络营销有哪些
  • 网站里的个人中心下拉列表怎么做网站设计与制作毕业论文范文
  • 做网站私活百度广告开户
  • 上海浦东新区做网站神秘网站
  • 网站怎么做可留言功能代运营公司排行榜
  • 怎样做免费网站推广全国免费发布信息平台