当前位置: 首页 > news >正文

电子商务网站开发平台如何免费注册网站平台

电子商务网站开发平台,如何免费注册网站平台,用laravel做的网站,电商设计的工作内容🍁🍁🍁图像分割实战-系列教程 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在Pycharm中进行 本篇文章配套的代码资源已经上传 deeplab系列算法概述 deeplabV3 VOC分割实战1 deeplabV3 VOC分割实战2 deeplabV3 VOC分割实战3 dee…

在这里插入图片描述

🍁🍁🍁图像分割实战-系列教程 总目录

有任何问题欢迎在下面留言
本篇文章的代码运行界面均在Pycharm中进行
本篇文章配套的代码资源已经上传

deeplab系列算法概述
deeplabV3+ VOC分割实战1
deeplabV3+ VOC分割实战2
deeplabV3+ VOC分割实战3
deeplabV3+ VOC分割实战4
deeplabV3+ VOC分割实战5

本项目的网络结构在network文件夹中,主要在modeling.py和_deeplab.py中:
modeling.py:指定要用的骨干网络是什么
_deeplab.py:根据modeling.py指定的骨干网络构建实际的网络结构

5、modeling.py的 _segm_resnet函数

def _segm_resnet(name, backbone_name, num_classes, output_stride, pretrained_backbone):if output_stride==8:replace_stride_with_dilation=[False, True, True]aspp_dilate = [12, 24, 36]else:replace_stride_with_dilation=[False, False, True]aspp_dilate = [6, 12, 18]
  • 如果输出步长为8,则
  • 替换步长用膨胀率,如果为None,设置默认值为[False, False, False],表示不使用空洞卷积,通过使用空洞卷积替代增加步长的标准卷积
  • 膨胀率为[12, 24, 36],用于调整空洞卷积
  • 如果输出步长不是8,则设置另外的参数
    backbone = resnet.__dict__[backbone_name](pretrained=pretrained_backbone, replace_stride_with_dilation=replace_stride_with_dilation)inplanes = 2048low_level_planes = 256
  • 使用指定的ResNet版本构建backbone
  • resnet.__dict__是一个指向不同ResNet模型的字典
  • pretrained=pretrained_backbone指定是否加载预训练权重
  • replace_stride_with_dilation用于控制网络中卷积层的步长和膨胀
  • inplanes = 2048:设置网络最后一层的通道数
  • low_level_planes = 256:设置低层特征的通道数
    if name=='deeplabv3plus':return_layers = {'layer4': 'out', 'layer1': 'low_level'}#classifier = DeepLabHeadV3Plus(inplanes, low_level_planes, num_classes, aspp_dilate)elif name=='deeplabv3':return_layers = {'layer4': 'out'}classifier = DeepLabHead(inplanes , num_classes, aspp_dilate)# 提取网络的第几层输出结果并给一个别名backbone = IntermediateLayerGetter(backbone, return_layers=return_layers)model = DeepLabV3(backbone, classifier)return model
  • return_layers 是一个字典,定义返回层,这个键值不用管,out对应的是带有高维度特征的输出对应的是比较大的物体的分割,low_level即小物体
  • classifier 初始化分类器,inplanes 传入分类器的特征通道数, low_level_planes 是低层特征的通道数,num_classes 是目标分类的类别数,aspp_dilate 是ASPP模块中使用的膨胀率
  • IntermediateLayerGetter(backbone, return_layers=return_layers),这里的backbone是之前定义的基础网络如resnet,return_layers定义了要从哪些层输出,IntermediateLayerGetter使得我们可以在后续的网络部分中使用这些特定层的输出进行进一步的处理和特征融合,最后得到修改后的backbone
  • model = DeepLabV3(backbone, classifier)使用修改后的backbone 和定义好的classifier构建DeepLabHeadV3Plus模型

6、_deeplab.py的 DeepLabHeadV3Plus类

在前面的_segm_resnet函数我们调用了DeepLabHeadV3Plus类来构建我们的网络,这部分介绍一下DeepLabHeadV3Plus类

6.1 构造函数

class DeepLabHeadV3Plus(nn.Module):def __init__(self, in_channels, low_level_channels, num_classes, aspp_dilate=[12, 24, 36]):super(DeepLabHeadV3Plus, self).__init__()self.project = nn.Sequential( nn.Conv2d(low_level_channels, 48, 1, bias=False),nn.BatchNorm2d(48),nn.ReLU(inplace=True),)self.aspp = ASPP(in_channels, aspp_dilate)self.classifier = nn.Sequential(nn.Conv2d(304, 256, 3, padding=1, bias=False),nn.BatchNorm2d(256),nn.ReLU(inplace=True),nn.Conv2d(256, num_classes, 1))self._init_weight()
  1. self.project,定义一个执行序列,包含一个二维卷积、一个批归一化、一个ReLU激活
  2. self.aspp,调用ASPP类初始化一个对象
  3. self.classifier,定义一个执行序列包含一个二维卷积、一个批归一化、一个ReLU激活、一个二维卷积
  4. self._init_weight(),调用此类中一个函数,这个函数主要用于初始化权重

6.2 前向传播函数

在这里插入图片描述

    def forward(self, feature):low_level_feature = self.project( feature['low_level'] )#return_layers = {'layer4': 'out', 'layer1': 'low_level'}output_feature = self.aspp(feature['out'])output_feature = F.interpolate(output_feature, size=low_level_feature.shape[2:], mode='bilinear', align_corners=False)return self.classifier( torch.cat( [ low_level_feature, output_feature ], dim=1 ) )
  1. 前向传播函数
  2. 从前面的定义中获取低纬度的特征,再经过一个卷积、归一化、激活的执行序列也就是1*1的卷积,得到最终的low_level_feature
  3. 从前面的定义中获取高纬度的特征,经过一个ASPP特征提取网络,得到最终的output_feature
  4. 使用双线性插值调整output_feature 匹配low_level_feature 的维度
  5. 最后将output_feature 与low_level_feature 拼接后再经过一个分类器执行序列,得到最终DeepLabHeadV3Plus类的输出特征

6.3 def _init_weight(self):函数

    def _init_weight(self):for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight)elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):nn.init.constant_(m.weight, 1)nn.init.constant_(m.bias, 0)
  1. 初始化权重函数
  2. 遍历模型 DeepLabHeadV3Plus 中的所有层
  3. 如果当前这个层是卷积层,则:
  4. 使用Kaiming初始化
  5. 如果是批量标准化(BatchNorm)或组标准化(GroupNorm)层,则:
  6. 将这些层的权重初始化为1
  7. 将这些层的偏置初始化为0

deeplab系列算法概述
deeplabV3+ VOC分割实战1
deeplabV3+ VOC分割实战2
deeplabV3+ VOC分割实战3
deeplabV3+ VOC分割实战4
deeplabV3+ VOC分割实战5

http://www.dinnco.com/news/35205.html

相关文章:

  • Wordpress漂亮免费主题seo算法是什么
  • 北京工作室网站建设百度seo关键词优化工具
  • 中国网站名二级域名网站查询入口
  • 建设的网站属于固定资产么百度公司招聘
  • 网站空间在哪里设计网站接单
  • 大同建设网站百度一下百度搜索网站
  • 网络游戏排行榜前十手游长沙网站seo排名
  • 有什么网站可以做海报软文投稿平台有哪些
  • 城市建设与管理局网站著名的营销成功的案例
  • 专业做农牧应聘的网站网络营销推广的概念
  • 给老外做兼职的网站电脑优化大师有用吗
  • 项目策划书模板上海快速排名优化
  • 全屏 单页网站网络营销的特征
  • 普陀网站建设哪家好怎样淘宝seo排名优化
  • 做投诉网站赚钱吗一键生成个人网站
  • 建设黄页大全网站入口关键词工具
  • 外链网盘网站公司广告推广方案
  • 个人投资公司注册条件自动app优化官网
  • 用asp做网站咖啡的营销推广软文
  • 网站建设亇金手指专业百度网盘资源搜索入口
  • 辽宁省建设工程造价管理网站网站策划方案案例
  • 网站构架怎么做百度seo排名帝搜软件
  • 邯郸住房和城乡建设委员会网站优化营商环境心得体会1000字
  • 白云高端网站建设案例seo网站优化知识
  • 专业做网站的技术人员网页设计软件
  • 做软件网站国内优秀个人网站欣赏
  • dreamweaver教程做网站站长工具同大全站
  • 嘉善公司网站建设联系人青岛网站建设
  • 有没有做丝网的网站呀有哪些搜索引擎网站
  • 怎么做拍卖网站吗品牌推广手段