当前位置: 首页 > news >正文

网站极速备案惠州百度seo找谁

网站极速备案,惠州百度seo找谁,网页设计与制作教程第4版,百度seo新站优化建议自己做,写完再来对答案。答案可能存在极小部分错误,不保证一定正确。 一、选择题 1-10、C A D B D B C D A A 11-20、A A A C A B D B B A 21-30、B C C D D A C A C B 31-40、B B B C D A B B A A 41-50、B D B C A B B B B C 51-60、A D D …

建议自己做,写完再来对答案。答案可能存在极小部分错误,不保证一定正确。

一、选择题

1-10、C A D B D B C D A A

11-20、A A A C A B D B B A

21-30、B C C D D A C A C B

31-40、B B B C D A B B A A

41-50、B D B C A B B B B C

51-60、A D D B B C B B C A

61-70、C B A B B B D B C B

71-78、B B A D B A C B

二、判断题

1-10、F F T F F T T F F F

11-20、F T T F T F F F T T

21-27、F T F F T T F

三、填空题

1-5、搜索引擎  输出门  Word2Vec  分布式  词

6-10、pytorch  LSTM  分布式  深度学习  残差连接

11-15、GloVe  多头注意力  人名  细胞  多标签分类

16-20、join  正面  文本摘要  共现矩阵  生成

21-25、numpy.dot()  RNN  二元模型  余弦相似度  位置编码

26-30、长距离依赖  TF-IDF  自注意力机制  稀疏向量表示  SGD

31-35、BERT  多头注意力机制  Hugging Face  精确  softmax(Qi*Ki^T)*Vi

36-40、TensorFlow  一  隐状态  三元模型  门控

41-45、相似性  目标词  BART  模型库(Hub库)    多分类

46-47、精确模式  召回率  

四、简答题

1、(1)分词:句子1:“我 喜欢 学习 自然语言处理”;句子2:“自然语言处理 是 我 喜欢 的 课程”

构建词典:词典:{"我", "喜欢", "学习", "自然语言处理"} 

编码:"我" -> [1, 0, 0, 0, 0]  "学习" -> [0, 0, 1, 0]  "喜欢" -> [0, 1, 0, 0]  "自然语言处理"-> [0, 0, 0, 1]

生成特征向量:我喜欢学习自然语言处理:[1,1,1,1]

2、自注意机制的核心公式为:

自注意力机制的计算步骤为(1)初始化(2)计算相似度(3)归一化(4)加权求和

3、自然语言处理有两个核心方向:自然语言理解(NLU)和自然语言生成(NLG)。 (2分)

(1)自然语言理解

自然语言理解的目标是使计算机能够“理解”人类的语言,主要集中于解析、分析

和提取文本中的信息。NLU技术通常用于语义分析、信息提取、情感分析、命名实体识别。

(2)自然语言生成

自然语言生成的目标是使计算机能够生成具有逻辑和语法正确的自然语言文本。NLG技术通常用于文本摘要、对话系统、文本生成。

4、BERT模型在预训练过程中采用了掩码语言模型(MLM)和下一句预测(NSP)两种

策略。 

(1)掩蔽语言模型(MLM)在训练过程中,BERT随机掩蔽输入句子中的某些单词(通常是15%),然后要求模型预测这些被掩蔽的单词。此策略使模型能够从上下文中学习词的表示,而不仅仅是从左到右或从右到左的顺序。这种双向的训练方式使BERT能够更好地理解上下文。

(2)BERT还通过下一句预测(NSP)这一策略训练模型理解句子之间的关系。在训练时,模型接受成对的句子,任务是判断第二个句子是否为第一个句子的后续句子。这个任务有助于模型学习句子间的逻辑关系,提升了模型在句子级任务(如问答和自然语言推理)上的表现。

 5、该题答案不唯一,只要最终值z=w1*x1+w2*x2与θ的比较和对应真值表的值一致均正确。

6、CBOW(Continuous Bag of Words)和Skip-gram  

相同点:(1)两者都是基于神经网络的模型,通过大规模的文本数据训练,学习到词语的词向量。(2)都使用窗口大小来定义上下文,目标是捕捉词与词之间的关系和相似性。

不同点:(1)目标不同:CBOW 通过上下文预测目标词, Skip-gram 通过目标词预测上下文。(2)计算复杂度:在训练时,Skip-gram 适合于低频词,而 CBOW 适合于高频词。Skip-gram 对低频词的学习效果更好,但计算开销较大;而 CBOW 对高频词的学习效果更好。

 7、(1)遗忘门决定哪些信息将被丢弃;

(2)输入门决定哪些信息将被添加到细胞状态;

(3)输出门决定最终的隐藏状态。

8、(1)输入表示 (2)计算注意力得分(3)应用softmax函数(4)加权和(5)输出

9、TF-IDF(Term Frequency-Inverse Document Frequency)工作原理分为两部分:TF(Term Frequency):表示某个词在文档中出现的频率,这部分反映了词在特定文档中的重要性,频率越高,重要性越大。

IDF(Inverse Document Frequency):衡量某个词在整个文档集合中的重要性。IDF值越高,说明该词越少见,具有更高的区分度。

10、(1Sigmoid 激活函数优点:输出范围在 (0, 1),适合处理二分类问题。具有平滑的导数,便于梯度计算。缺点:容易导致梯度消失(vanishing gradient)问题,尤其在深层网络中。输出不是零均值,可能导致训练过程中的不稳定。

2ReLU(Rectified Linear Unit)激活函数优点:计算简单,训练速度快。有效缓解梯度消失问题,使得深层网络能够更快地收敛。缺点:在训练过程中,某些神经元可能永远不被激活(dying ReLU问题),导致信息损失。

3Tanh 激活函数优点:输出范围在 (-1, 1),有助于数据中心化,通常收敛速度比Sigmoid快。相对于Sigmoid,Tanh函数的梯度较大,缓解了梯度消失问题。缺点:仍然存在梯度消失问题,尤其在深层网络中。计算相对复杂,速度比ReLU慢。

http://www.dinnco.com/news/35552.html

相关文章:

  • 有和wind一样做用网站流量宝官网
  • 香港主机做福彩网站网络营销专业大学排名
  • 网站建设分为几种网站免费网站免费优化优化
  • wordpress 分页新乡seo优化
  • 国外做游戏h动画的网站常州谷歌推广
  • 重庆百度seo关键词优化seo代理计费系统
  • 网站LOGO透明底色PNG格式怎么做的aso苹果关键词优化
  • 义乌做网站要多少钱seo综合查询站长工具怎么用
  • 海南美容网站建设网络整合营销
  • 网站有什么优势石家庄seo推广
  • 做好网站改版工作跨境电商平台推广
  • 网站网站制作服务seo网络推广技术员招聘
  • 3合1网站建设谷歌官方网站
  • 邢台市网站开发公司有哪些什么推广平台比较好
  • 制作网站建设的公司2023年8月疫情严重吗
  • 建平台跟建网站汕头seo推广
  • 劳务网站怎样做百度seo排名规则
  • 在线客服系统排名沈阳seo公司
  • 做赚钱的网站有哪些互联网营销师是哪个部门发证
  • 一起做网店网站官方百度竞价点击价格公式
  • 网站建设包含哪些百度公司官网招聘
  • 在什么网站上可以做中学数学家教神马推广
  • wordpress制作企业网站小小课堂seo自学网
  • wordpress微信快捷支付成都seo服务
  • 网站由那些组成杨谦教授编的营销课程
  • 自己做网站网页剧中软文营销案例文章
  • 网站被降权如何恢复网络公司主要做哪些
  • 做网站 徐州百度竞价推广效果好吗
  • 天河做网站平台关键词优化是怎么弄的
  • 自建个人网站平台怎么找百度客服