当前位置: 首页 > news >正文

网站管理员中心设计公司企业网站

网站管理员中心,设计公司企业网站,建设工程官方网站,网站logo怎么设计【1】引言 前序学习进程中,对条件概率进行了简单探索:https://blog.csdn.net/weixin_44855046/article/details/145388138?spm1001.2014.3001.5501 今天,以此为基础,探索机器学习中朴素贝叶斯方法的基本程序。 【2】代码解读 …

【1】引言

前序学习进程中,对条件概率进行了简单探索:https://blog.csdn.net/weixin_44855046/article/details/145388138?spm=1001.2014.3001.5501

今天,以此为基础,探索机器学习中朴素贝叶斯方法的基本程序。

【2】代码解读

【2.1】库引入

这里只需要numpy库:

# 引入numpy模块
import numpy as np

【2.2】初始定义

这里现需要定义一个矩阵用于后续计算:

在机器学习中,可以认为一个3行2列的矩阵,是由3个样本组成的大样本,每个样本包含两个特征。

矩阵的行数就是样本数,矩阵的列数就是特征数。

# 假设有3个样本,2个特征
# 样本数就是行数,特征数是列数
X = np.array([[1, 0],  # 样本1[1, 1],  # 样本2[0, 1]  # 样本3
])

然后定义一个类别标签数组:

# 这里天然地认为,0对应第一个样本,后面的1和1对应第2和第3个样本
# y内部的数据认为是类别
y = np.array([0, 1, 1])  # 样本1属于类别0,样本2和3属于类别1

经过y的定义,矩阵X被划分为:

    [1, 0],  # 样本1    →     类别0
    [1, 1],  # 样本2    →     类别1
    [0, 1]  # 样本3     →     类别1

 然后需要定义一些变量来存储数据:

# 定义常数n_classes
n_classes = 2
# 定义n_features存储X的第二个维度特征,也就是列数
n_features = X.shape[1]  # 2个特征
# 定义一个type动态函数,创建一个名为Dummy的类
# 继承自object(object是Python 所有类的基类,提前内置好,无需在代码中定义)
# {}是类的属性和方法,但是此处没有定义,所以没有任何属性和方法
self = type('Dummy', (object,), {})()  # 创建临时对象
# 定义一个conditional的纯0矩阵,大小为n_classes行n_features列
self.conditional = np.zeros((n_classes, n_features))

其中,n_classes和n_features存储单个数据,self.conditional是一个纯0矩阵。

变量定义
变量类型示例用途说明
n_classes标量(int)2类别数量,确定矩阵行数可通过X.shape[0]获取
n_features标量(int)2特征数量,确定矩阵列数可通过X.shape[1]获取
self.conditional矩阵(ndarray)

shape=(

n_classes,n_features)

存储条件概率的二维数组初始定义为纯0矩阵
selfDummy类使用type()动态函数定义是一个临时对象

其中,n_classes和n_features存储单个数据,self.conditional是一个纯0矩阵。  

【2.3】计算

之后进行计算:

# 定义一个for循环,对y进行枚举
# np.unique(y)是对y进行合并同类项
# i是y合并同类项以后,具体的项对应的位置
# c是y合并同类项以后,具体的项
for i, c in enumerate(np.unique(y)):# 当y中的取值为类别c,X_c为True# 当y取值为c时,y==c的值应该是True,但X[y==c]可以取出y==c时的X值X_c = X[y == c]print(f"类别 {c} 的样本:\n{X_c}")# 计算条件概率,使用拉普拉斯平滑公式self.conditional[i] = (X_c.sum(axis=0) + 1) / (X_c.shape[0] + n_features)print(f"类别 {c} 的条件概率:{self.conditional[i]}\n")

这里定义了一个枚举函数enumerate()的for循环:

枚举函数enumerate()函数中的参数是np.unique(y),可以实现对y这个数组的同类项合并操作。

前面的公式定义了y = np.array([0, 1, 1]),经过执行np.unique(y),会获得[0,1]这样的精简数组。

执行X_c = X[y == c]时:

  1. 先按照y==0进行判断,此时将会对应y的实际定义值[0, 1, 1]得到[True,False,False],X[y==c]则只会输出True对应位置处的样本[1,0]。
  2. 然后按照y==1进行判断,此时将会对应y的实际定义值[0, 1, 1]得到[False,True,True,],X[y==c]则只会输出True对应位置处的样本[1,1]和[0,1]。

 然后就可以调用拉普拉斯平滑公式进行条件概率计算:

self.conditional[i] =(X_c.sum(axis=0) + 1) / (X_c.shape[0] + n_features)

X_c.sum(axis=0) + 1的意思是,先按照各列单独相加求和,然后求和结果再增加1,比如:

y==1是,X_c获得:

[1,1],

[0,1]

这两个样本排列成2行2列,执行X_c.sum(axis=0) + 1后,获得:

[1+0,1+1]+[1,1]=[2,3]

此时的 X_c.shape[0] =2,即样本的数量

n_features=2,即每个样板的特征。

此时计算的结果就是:

[2/(2+2),3/(2+2)]=[0.5,0.75]

完整代码为:

# 引入numpy模块
import numpy as np# 假设有3个样本,2个特征
# 样本数就是行数,特征数是列数
X = np.array([[1, 0],  # 样本1[1, 1],  # 样本2[0, 1]  # 样本3
])
# 这里天然地认为,0对应第一个样本,后面的1和1对应第2和第3个样本
# y内部的数据认为是类别
y = np.array([0, 1, 1])  # 样本1属于类别0,样本2和3属于类别1# 定义常数n_classes
n_classes = 2
# 定义n_features存储X的第二个维度特征,也就是列数
n_features = X.shape[1]  # 2个特征
# 定义一个type动态函数,创建一个名为Dummy的类
# 继承自object(object是Python 所有类的基类,提前内置好,无需在代码中定义)
# {}是类的属性和方法,但是此处没有定义,所以没有任何属性和方法
self = type('Dummy', (object,), {})()  # 创建临时对象
# 定义一个conditional的纯0矩阵,大小为n_classes行n_features列
self.conditional = np.zeros((n_classes, n_features))# 定义一个for循环,对y进行枚举
# np.unique(y)是对y进行合并同类项
# i是y合并同类项以后,具体的项对应的位置
# c是y合并同类项以后,具体的项
for i, c in enumerate(np.unique(y)):# 当y中的取值为类别c,X_c为True# 当y取值为c时,y==c的值应该是True,但X[y==c]可以取出y==c时的X值X_c = X[y == c]print(f"类别 {c} 的样本:\n{X_c}")# 计算条件概率,使用拉普拉斯平滑公式self.conditional[i] = (X_c.sum(axis=0) + 1) / (X_c.shape[0] + n_features)print(f"类别 {c} 的条件概率:{self.conditional[i]}\n")

 代码运行后的输出为:

类别 0 的样本:
[[1 0]]
类别 0 的条件概率:[0.66666667 0.33333333]

类别 1 的样本:
[[1 1]
 [0 1]]
类别 1 的条件概率:[0.5  0.75]

【3】总结

 学习了机器学习朴素贝叶斯方法中拉普拉斯平滑计算条件概率的基本方法。

http://www.dinnco.com/news/39389.html

相关文章:

  • 网站优化 前端怎么做一个新手怎么做推广
  • 销售平台排名知名的seo快速排名多少钱
  • 西安哪里做网站什么样的人适合做营销
  • 江苏苏州疫情最新消息网站优化公司收费
  • php网站怎么做seo长沙网站策划
  • app公司管理北京百度seo
  • 微信公众号微网站制作排名轻松seo 网站推广
  • 包头网站建设制作百度推广信息流有用吗
  • 电子商务网站策划书3500字网络营销推广方案设计
  • 网站建设公司营业执照经营范围宁波seo网络推广定制
  • 怎样制作网站?自己的网站怎么推广
  • 建立外贸英文网站应该怎么做seo网站分析工具
  • wordpress 个性网站网站推广的一般流程是
  • jsp旅游网站开发系统深圳哪里有网络推广渠避
  • 网站建设模板是什么软文案例500字
  • 新闻发布会的意义sem和seo区别与联系
  • 天津网站建设企业系统html+css网页制作成品
  • 专业做淘宝网站公司哪家好网站收录情况
  • html怎么做网站地图好搜自然seo
  • 福建城乡建设网站seo优化网站
  • 如何学网站建设网站优化技术
  • 制作企业网站的seo深圳网络推广
  • 做石材外贸用什么网站《新闻联播》今天
  • 天水网站制作苏州百度
  • 做购物网站的公司seo外链资源
  • 网站制作的订单株洲seo优化首选
  • 使用wampserver做响应式网站企业seo排名有 名
  • 网站建设品牌有哪些百度官网app下载
  • wordpress内容页怎么分页宁波正规站内优化seo
  • 内容管理系统WordPress安阳企业网站优化外包