当前位置: 首页 > news >正文

丽江市网站建设优化大师怎么提交作业

丽江市网站建设,优化大师怎么提交作业,还有用asp做网站的吗,安卓studio制作一个简单app目录 主成分分析 1、简介 2、帮助理解 3、API调用 4、案例 本文介绍主成分分析的概述以及python如何实现算法,关于主成分分析算法数学原理讲解的文章,请看这一篇: 探究主成分分析方法数学原理_逐梦苍穹的博客-CSDN博客https://blog.csdn.…

目录

主成分分析

1、简介

2、帮助理解

3、API调用

4、案例


本文介绍主成分分析的概述以及python如何实现算法,关于主成分分析算法数学原理讲解的文章,请看这一篇:

探究主成分分析方法数学原理_逐梦苍穹的博客-CSDN博客icon-default.png?t=N6B9https://blog.csdn.net/qq_60735796/article/details/132339011

感谢大家支持!您的一键三连,就是我创作的最大动力!

主成分分析

1、简介

主成分分析(Principal Component Analysis,PCA)是一种常用的数据降维和特征提取技术用于将高维数据转化为低维表示,同时保留数据的主要特征。

它通过线性变换将原始特征投影到新的坐标轴上,使得投影后的特征具有最大的方差,从而达到降低数据维度的目的。

PCA 的主要思想是寻找数据中的主要方向,即数据的主成分,这些主成分是数据变化最大的方向。通过保留最重要的主成分,可以将数据的维度减少,从而减少存储和计算的成本,同时可以降低数据中的噪声和冗余信息,提高模型的泛化能力。

PCA 的工作步骤如下:

  1. 标准化数据
  2. 计算数据的协方差矩阵。
  3. 对协方差矩阵进行特征值分解,得到特征值和特征向量。
  4. 将特征值按从大到小的顺序排列,选择前几个特征值对应的特征向量作为主成分。
  5. 将原始数据投影到选定的主成分上,得到降维后的数据。

PCA 在许多领域中有广泛的应用,包括数据可视化、特征工程、模式识别、图像处理等。它可以帮助我们理解数据的内在结构,去除冗余信息,提高模型的效果和效率。

需要注意的是,PCA 假设数据分布在高维空间中呈线性关系,因此在存在非线性关系的情况下,PCA 可能效果不佳。在这种情况下,可以考虑使用非线性降维技术,如核主成分分析(Kernel PCA)。

2、帮助理解

如何使用最少的特征,保留原始的主成分,如图所示:

3、API调用

sklearn.decomposition.PCA(n_components=None)

将数据分解为较低维数空间

n_components:

小数:表示保留百分之多少的信息

整数:减少到多少特征

PCA.fit_transform(X) X:numpy array格式的数据[n_samples,n_features]

返回值:转换后指定维度的array

# -*- coding: utf-8 -*-
# @Author:︶ㄣ释然
# @Time: 2023/8/16 15:42
from sklearn.decomposition import PCA'''
sklearn.decomposition.PCA(n_components=None)将数据分解为较低维数空间n_components:小数:表示保留百分之多少的信息整数:减少到多少特征PCA.fit_transform(X) X:numpy array格式的数据[n_samples,n_features]返回值:转换后指定维度的array
'''
def pca_demo():"""对数据进行PCA降维"""data = [[2, 8, 4, 5], [6, 3, 0, 8], [5, 4, 9, 1]]# 1、实例化PCA, 小数——保留多少信息transfer = PCA(n_components=0.9)# 2、调用fit_transformdata1 = transfer.fit_transform(data)print("保留90%的信息,降维结果为:\n", data1)# 1、实例化PCA, 整数——指定降维到的维数transfer2 = PCA(n_components=3)# 2、调用fit_transformdata2 = transfer2.fit_transform(data)print("降维到3维的结果:\n", data2)if __name__ == '__main__':pca_demo()

输出结果:

4、案例

案例:探究用户对物品类别的喜好细分降维

数据如下:

order_products__prior.csv:订单与商品信息

字段:order_id, product_id, add_to_cart_order, reordered

products.csv:商品信息

字段:product_id, product_name, aisle_id, department_id

orders.csv:用户的订单信息

字段:order_id,user_id,eval_set,order_number,….

aisles.csv:商品所属具体物品类别

字段: aisle_id, aisle

步骤:

合并表,使得user_id与aisle在一张表当中

进行交叉表变换

进行降维

代码:

from sklearn.decomposition import PCA
import pandas as pddef data_demo():# 1、获取数据集# ·商品信息- products.csv:# Fields:product_id, product_name, aisle_id, department_id# ·订单与商品信息- order_products__prior.csv:# Fields:order_id, product_id, add_to_cart_order, reordered# ·用户的订单信息- orders.csv:# Fields:order_id, user_id,eval_set, order_number,order_dow, order_hour_of_day, days_since_prior_order# ·商品所属具体物品类别- aisles.csv:# Fields:aisle_id, aisleproducts = pd.read_csv("data/instacart/products.csv")order_products = pd.read_csv("data/instacart/order_products__prior.csv")orders = pd.read_csv("data/instacart/orders.csv")aisles = pd.read_csv("data/instacart/aisles.csv")# 2、合并表,将user_id和aisle放在一张表上# 1)合并orders和order_products on=order_id tab1:order_id, product_id, user_idtab1 = pd.merge(orders, order_products, on=["order_id", "order_id"])# 2)合并tab1和products on=product_id tab2:aisle_idtab2 = pd.merge(tab1, products, on=["product_id", "product_id"])# 3)合并tab2和aisles on=aisle_id tab3:user_id, aisletab3 = pd.merge(tab2, aisles, on=["aisle_id", "aisle_id"])# 3、交叉表处理,把user_id和aisle进行分组table = pd.crosstab(tab3["user_id"], tab3["aisle"])# 4、主成分分析的方法进行降维# 1)实例化一个转换器类PCAtransfer = PCA(n_components=0.95)# 2)fit_transformdata = transfer.fit_transform(table)print(data.shape)if __name__ == '__main__':data_demo()

结果:

http://www.dinnco.com/news/56042.html

相关文章:

  • 长春 餐饮 网站建设互联网平台
  • javaweb怎么做网站免费自制app软件
  • 互联网公司主要干什么seo技术培训山东
  • 建设工程网上质检备案网站廊坊网站
  • 个人网页设计文档说明模板seo三人行论坛
  • wordpress中文编辑器插件北京aso优化
  • 网站建设飠金手指科杰十五如何网上免费打广告
  • 网站自动化采集seo实战密码第三版pdf
  • 酒店网站策划书怎么把产品快速宣传并推广
  • 上海专业做网站电话创建自己的网站
  • 一流的嘉兴网站建设百度推广网站
  • asp。net网站开发软文通
  • 做网站兼容ie如何搭建企业网站
  • 举报网站赚钱网络营销工具的特点
  • 公司网站开发实训报告3a汽车集团公司网络营销方案
  • 南京高端网站制作公司一份完整的品牌策划方案
  • 电子商务网站开发费用调研报告抚州网络推广
  • 单位有公网ip怎么做网站常见的网络营销方式有哪些
  • 泰州做网站公司详情页页面页面
  • 做公众号的网站模板今日新闻头条官网
  • 成都到深圳物流公司嘉兴seo外包平台
  • 哈尔滨营销型网站制作关键词优化推广策略
  • 保定网站建设哪家好网络推广外包要多少钱
  • 静态网站 插件企业网站模板免费下载
  • 北京如何做网站百度小程序
  • 招聘网站费用怎么做分录网站推广怎么弄
  • 去哪儿网站上做民宿需要材料百度网站收录提交入口
  • 清河网站建设全网推广
  • 做网站工具icp备案查询
  • 做网站建设网站制作营销推广计划怎么写