当前位置: 首页 > news >正文

邯郸企业做网站引流推广神器

邯郸企业做网站,引流推广神器,企业网站的设计思路,企业做网站一般多少钱在上一个关于3D 目标的任务,是基于普通CNN网络的3D分类任务。在这个任务中,分类数据采用的是CT结节的LIDC-IDRI数据集,其中对结节的良恶性、毛刺、分叶征等等特征进行了各自的等级分类。感兴趣的可以直接点击下方的链接,直达学习&…

在上一个关于3D 目标的任务,是基于普通CNN网络的3D分类任务。在这个任务中,分类数据采用的是CT结节的LIDC-IDRI数据集,其中对结节的良恶性、毛刺、分叶征等等特征进行了各自的等级分类。感兴趣的可以直接点击下方的链接,直达学习:

  1. 【3D图像分类】基于Pytorch的3D立体图像分类1(基础篇)
  2. 【3D图像分类】基于Pytorch的3D立体图像分类2(数据增强篇)

在开始本次关于3D 目标的分割任务前呢,我还是建议先去看看上述较为简单的分类任务,毕竟大多数是相似的,有很高的借鉴意义。

一、导言

准备一个训练,需要下面这些内容组成:

  1. 准备数据
  2. 准备网络
  3. 搭建训练主模型
    • train one epoch
    • valid one epoch
    • 存储模型
    • 存储指标
  4. loss 函数
  5. dice coeff 评估指标
  6. optimizer优化方式

其中,在本项目中:

  1. 网络采用vnet 3d模型
  2. 数据采用patch裁剪大小
  3. loss函数未dice loss
  4. 评价指标是dice coeff
  5. optimizer优化方式是SGD

二、搭建主结构

训练的主体结构(骨架),总数包括几个部分:

  1. config:可调参数定义,包括数据路径、图像大小、类别数量、学习率、batch size等等;
  2. main:主函数,包括:
    • 构建模型
    • 构建数据
    • 优化器
    • 学习率变化方式
    • 损失函数
    • 评估指标
    • 训练batch循环
    • 验证batch循环
  3. 后处理:包括模型参数存储,指标走势绘图等等。

上面这些个内容,基本上是囊括了深度学习模型训练的整体结构了,后面的工作就是对每一部分进行补充。就犹如已经有了骨架,后续就是补充肉身了。

后面给出的这个pytorch骨架案例,也是后面再构建训练任务,一个可以参考的依据,可收藏。

2.1、导入库和配置参数

import os
import matplotlib.pyplot as plt
import torch.utils.data
import torch.optim as optimfrom datasets.datasets import myDatasetos.environ["CUDA_VISIBLE_DEVICES"] = "0, 1, 2, 3"  # 使用gpu0
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")  # 没gpu就用cpu
print(DEVICE)############################################################
# Configuration
############################################################
class Configuration(object):train_path = r"./database/sk_output/train"valid_path = r"./database/sk_output/valid"model_path = r'./checkpoints'Crop_Size = (48, 96, 96)num_outs = 2Batch_Train = 32Batch_Test = 16Max_epoch = 220Num_Workers = 8Dice_Best = 0LR = 0.0003momentum = 0.99weight_decay = 1e-8def display(self):"""Display Configuration values."""print("\nConfigurations:")print("")for a in dir(self):if not a.startswith("__") and not callable(getattr(self, a)):print("{:30} {}".format(a, getattr(self, a)))print("\n")

2.2、构建main主函数

def main():Config = Configuration()Config.display()train_loader, valid_loader = get_Dataloader(Config)model = get_model(Config).to(DEVICE)# ---- OPTIMIZER ----optimizer = optim.SGD(model.parameters(), lr=Config.LR, momentum=Config.momentum, weight_decay=Config.weight_decay)train_loss_list = []  # 用来记录训练损失valid_loss_list = []  # 用来记录验证损失valid_dice_list = []epoch_list = []for epoch in range(1, Config.Max_epoch + 1):epoch_list.append(epoch)train_loss = train_model(model, DEVICE, train_loader, optimizer, epoch)  # 训练valid_loss, valid_dice = valid_model(model, DEVICE, valid_loader, epoch)  # 验证train_loss_list.append(train_loss)valid_loss_list.append(valid_loss)valid_dice_list.append(valid_dice)draw_plot(epoch_list, valid_dice_list, 'valid_dice')draw_plot(epoch_list, valid_loss_list, 'valid_loss')draw_plot(epoch_list, train_loss_list, 'train_loss')if valid_dice > Config.Dice_Best:path_ckpt = os.path.join(Config.model_path, 'best_model.pth')save_model(path_ckpt, model)Config.Dice_Best = valid_diceelse:path_ckpt = os.path.join(Config.model_path, 'last_model.pth')save_model(path_ckpt, model)print('best val Dice is ', Config.Dice_Best)if __name__ == '__main__':main()

2.3、构建获取模型和数据的函数

def get_model(config):from models.vnet3d import VNet3Dmodel = VNet3D(num_outs=config.num_outs, channels=16)model = model.to(DEVICE)  # 模型部署到gpu或cpu里model = torch.nn.DataParallel(model).to(DEVICE)return modeldef get_Dataloader(config):# get train datadataset_train = myDataset(config.train_path, config.Crop_Size, isTrain=True)print(len(dataset_train))train_loader = torch.utils.data.DataLoader(dataset_train,batch_size=config.Batch_Train, shuffle=True,num_workers=config.Num_Workers, drop_last=False)# get valid datadataset_valid = myDataset(config.valid_path, config.Crop_Size, isTrain=False)valid_loader = torch.utils.data.DataLoader(dataset_valid,batch_size=config.Batch_Test, shuffle=False,num_workers=config.Num_Workers, drop_last=False)return train_loader, valid_loader

2.4、构建训练循环和验证循环

def train_model(model, device, train_loader, optimizer, epoch):config = Configuration()model.train()for batch_index, (data, target) in enumerate(train_loader):  # 取batch索引,(data,target),也就是图和标签data, target = data.to(device), target.to(device)output = model(data)loss = Loss(output, target)optimizer.zero_grad()  # 梯度归零loss.backward()  # 反向传播optimizer.step()  # 优化器走一步return losses.avg  # 返回平均损失,损失列表def valid_model(model, device, test_loader, epoch):config = Configuration()model.eval()with torch.no_grad():  # 不进行 梯度计算(反向传播)for batch_index, (data, target) in enumerate(test_loader):  # 枚举batch索引,(图,标签)data, target = data.to(device), target.to(device)output = model(data)loss = Loss(output, target)  # 计算损失return losses.avg, multi_dices.avg

2.5、后处理

保存模型的参数,和绘制训练过程中train loss、valid loss,以及valid dice走势图,如下:

def draw_plot(x_list, y_list, title_name):plt.plot(x_list, y_list, label=title_name)plt.xlabel('x', fontsize=15)plt.ylabel('y', fontsize=15)plt.title(title_name, fontsize=15)plt.savefig('./logs/cure.png')def save_model(path, model):if isinstance(model, torch.nn.DataParallel):state_dict = model.module.state_dict()else:state_dict = model.state_dict()torch.save(state_dict, path)

至此,每一个模块都有了对应的归宿,后面就是如何将缺漏的地方,补全过程了。反倒是这部分的代码相对较少,两大需要单独验证的数据和模型是大头,其他就好办了。

三、总结

本文是关于PytorchVNet 3D 图像分割的第一篇,也就是一个综述篇,主要是对这个项目的任务目的,以及其中的一个流程进行了梳理。

上述的骨干代码还不能够作为训练使用,还需要补充进去骨肉,才能够适应不同的任务,这一块的内容将会在后面的几个篇章中,一一陈述。

如果你也在做类似的事情,欢迎点赞、收藏,mark住。对于这部分的内容可以一起交流,欢迎多多评论。

http://www.dinnco.com/news/68836.html

相关文章:

  • photoshop网页版丁的老头seo博客
  • 贵阳网站开发公司流量主广告点击自助平台
  • 济南市住建局官方网站2022最新永久地域网名
  • 做个网站的价格sem竞价
  • 咋自己做网站百度seo关键词工具
  • 怎么才能知道网站是谁做的淘宝指数查询入口
  • 网站建设 ui 企业网站输入关键词进行搜索
  • 网页制作与网站管理网站友情链接是什么
  • 有网址 有空间怎么做网站官网优化包括什么内容
  • 做网站要公安备案吗百度推广助手怎么用
  • 做网站的图片网站建设百度推广
  • 如何用手机制作app南昌seo教程
  • 雄县做网站网站制作培训
  • 常州哪家做网站便宜佛山seo技术
  • wordpress支持采集吗seo工作怎么样
  • 网站换了服务器网站建设与管理是干什么的
  • 做分子生物实验常用网站seo企业站收录
  • 龙井网站建设网络营销的六大功能
  • 免费自己建网站运营推广
  • 威海做网站哪家好深圳营销型网站开发
  • 重庆外贸网站建设公司软件推广接单平台
  • 如何建设一个博客网站全自动引流推广软件下载
  • 定做网站建设深圳网络推广有几种方法
  • 做网站好的网站建设公司seo站外推广有哪些
  • 外贸建站应该怎么做百度网盘下载的文件在哪
  • 企业官网模板下载百度seo综合查询
  • 泰安网站建设案例市场营销案例分析
  • 南京网页网站制作免费发布推广信息的软件
  • 今科网站建设公司凡科建站官网
  • 网站的开发方法广州网站建设正规公司