当前位置: 首页 > news >正文

网站更换目录名如何做301跳转颜色广告

网站更换目录名如何做301跳转,颜色广告,拉萨网站建设系统,上传设计作品的网站完全二叉树与堆 前言优先队列:堆向下调整维护堆向上调整维护堆堆的作用 前言 本文算是补充之前的系列,在前文中,讲了二叉树的基本结构与应用 二叉树从入门到AC(1)构建和前中后序遍历 二叉树从入门到AC(2&a…

完全二叉树与堆

    • 前言
    • 优先队列:堆
    • 向下调整维护堆
    • 向上调整维护堆
    • 堆的作用

前言

本文算是补充之前的系列,在前文中,讲了二叉树的基本结构与应用
二叉树从入门到AC(1)构建和前中后序遍历
二叉树从入门到AC(2)深度与层次遍历
二叉树的特殊形态
二叉树有两种常用的特殊形态:满二叉树和完全二叉树。如果一颗二叉树,其内部每个结点都有左右儿子,我们称之为满二叉树,这很好理解,如图所示:
在这里插入图片描述

我们在满二叉树中的最后一层,从右往左连续拔去至少零个结点,便是完全二叉树。也就是说,满二叉树是一种特殊的完全二叉树
在这里插入图片描述
以上都为完全二叉树
那么如何判断一棵树是不是完全二叉树呢?我们可以运用层次遍历的结构(前文有代码),首先将储存一颗非空树,在队列中遵循:
1.如果遇到一个结点,左孩子为空,右孩子不为空,则该树一定不是完全二叉树
2.如果遇到一个结点,左孩子不为空,右孩子为空;或者左右孩子都为空,且则该节点之后的队列中的结点都为叶子节点,该树才是完全二叉树
3.以上两个一直都没触发,说明是满二叉树

优先队列:堆

堆,是一种特殊的完全二叉树,每个结点储存一个值,其中,若所有父结点都小于其子结点,称为最小堆,反之则是最大堆。如图:
在这里插入图片描述
二叉堆是一种基础数据结构,C++ 的STL中的优先队列就是使用二叉堆。另外,堆排序也是一种二叉堆算法。
堆的作用主要面向一个问题:如何高效的在一组数据中任意插入删除任何值的情况下,始终找到最小值/最大值。
这种数据结构也被称为优先队列。

向下调整维护堆

以上图的最小堆为例,在数组中按层次遍历储存为3,5,7,9,8,11
要求:不限次数的删除最小值并插入进新的值,保持堆的属性(最小值在堆顶)
这时候我们删除堆顶的最小值3,并且添加任意一个数如10到堆顶,只要能维护这个堆的属性,我们就可以得到新的最小值。
于是设计算法,我们从堆顶开始反复执行:把当前结点与左右儿子比对,并与最小的那个结点交换值,直到无法交换(要么是左右儿子都更大,要么是到叶子结点了)
如图所示:
在这里插入图片描述
于是我们维护住了一个最小堆,最大堆也是同理。那么在代码层就好写多了,我们可以根据数组下标发现,设当前结点下标为i,我们只需要每次与2i和2i+1相比并判断是否Swap就好
在这里插入图片描述

void Sswap(int a,int b)
{int c=0;c=arr[b];arr[b]=arr[a];arr[a]=c;
}
void siftdown(int i)//向下调整,用于寻找最值
{int t=0,flag=0;while(i*2<=n&&flag==0){if(arr[i]>arr[i*2])t=i*2;elset=i;if(t*2+1<=n){if(arr[t]>arr[i*2+1])t=i*2+1;}if(t!=i){Sswap(t,i);//交换两结点的值i=t;}elseflag=1;}
}

在主函数中,我们将数组调整为全局变量,并且i始终设为0,例如

int arr[6]={10,5,7,9,8,11};
int n=5;
int main()
{siftdown(0);for(int i=0;i<=n;i++){printf("%d ",arr[i]);}return 0;
}

执行结果:
在这里插入图片描述

向上调整维护堆

如果我们需要不断向堆中添加数值而不删除数值怎么办?那么我们可以从下面的叶子结点开始添加,并逐一往上比对,来维护堆。

void siftup(int i)
{int flag=0;if(i==0)return;while(i!=0&&flag==0){if(arr[i]<arr[i/2])Sswap(i,i/2);elseflag=1;i=i/2;}
}

我们将:arr[6]={3,5,7,9,8,1};
与i=5代入,
在这里插入图片描述

这便是堆的维护操作。

堆的作用

当我们输入一个数组,并求其最值时,我们一般会开max或min比对每个数并保留最值,这是时间复杂度最低的做法,为O(N)。但是当我们删除最小值并添加进一个新值之后,就相当于需要彻底进行一次重新排序,复杂度也来到了O(N^2),而同样的目的,由于堆的特性,维护起来只需要logN的时间。
那么我们如何用完全无序的数列建立一个堆呢?

void creat()
{int i=0;for(i=n/2;i>=0;i--){siftdown(i);}
}

即可。
在创建了堆之后,我们还有著名的排序方法,堆排序,网上到处都有模板在这里不赘述。另外,堆也是一种重要的优化思路出现在别的算法中,主旨都在于用更短的时间来在插入、删除元素的情况下捕捉最值(或者第n大的值也可以)。

http://www.dinnco.com/news/7030.html

相关文章:

  • 高新区建网站外包北京seo顾问推推蛙
  • 做网站协调微信附近人推广引流
  • 找公司做网站注意事项百度seo搜索引擎优化
  • 大型网站许多网站国际新闻头条
  • 大连建网站网站制作收录优美图片app
  • 上海企业工商查询西安百度推广优化托管
  • 网站文字公告代码有哪些网站可以免费推广
  • 佛山企业名录黄页汕头seo按天付费
  • 做一个网页版面多少钱seo站内优化站外优化
  • 网站建设企业的市场分析网站排名优化怎样做
  • 空间设计网站大全网络媒体
  • 做网站的外包需要分享客户信息百度seo排名软
  • 公司新闻网页制作软件企业网站优化技巧
  • 湘西网站建设吧武汉网优化seo公司
  • 晋江做任务的网站网页自动点击软件
  • 安徽淮南做seo排名
  • 关于企业网站建设的提案百度电脑版官方下载
  • 服务类网站banner网络推广运营
  • 自己公司做公益网站怎么弄宁波网站推广优化
  • 1997年做网站是什么语言最新疫情爆发
  • c 网站做微信收款功能seo权重优化软件
  • 无锡建设局评职称网站竞价排名点击器
  • 做网站宽度谷歌搜索引擎 google
  • 网站与网站链接怎么做站长seo查询工具
  • 做网站用啥框架seo优化服务商
  • 个人网站教程百度知道合伙人答题兼职
  • 淘宝客单页网站怎么做上海高端网站定制
  • 专业做网站开发推广排名
  • wordpress 4 按钮 不显示seo需要什么技术
  • 淮南建设工程信息网站软文推广代写代发