当前位置: 首页 > news >正文

360搜索入口搜索引擎优化的基础是什么

360搜索入口,搜索引擎优化的基础是什么,校园网站的建设费用,内蒙古 网站建设一、机器学习的关键因素 1.1 数据 每个数据集由一 个个样本组成,大多情况下,数据遵循独立同分布。通常每个样本由一组特征属性组成。 好的数据集 { 数据样本多 正确的数据 ( g a r b a g e i n , g a r b a g e o u t ) 好的数据集 \begin{cases} 数据…

一、机器学习的关键因素

1.1 数据

  每个数据集由一 个个样本组成,大多情况下,数据遵循独立同分布。通常每个样本由一组特征属性组成。
好的数据集 { 数据样本多 正确的数据 ( g a r b a g e i n , g a r b a g e o u t ) 好的数据集 \begin{cases} 数据样本多\\\ 正确的数据(garbage \quad in,\quad garbage \quad out) \end{cases} 好的数据集{数据样本多 正确的数据(garbagein,garbageout)

1.2 模型

  与经典机器学习算法模型相比,深度学习的模型由神经网络错综复杂地交织在一起,包含层层数据转换,模型功能更加强大。

1.3 目标函数

  在机器学习中,需要定义对模型的优劣程度的度量,并且这个度量在大多数情况下是“可优化的”,这被称为目标函数。
优化的两种思路 { 1 、损失函数,越小越好(例如:平方误差函数) 最常用的方法 2 、设计一种新的函数,优化到其最大值 优化的两种思路 \begin{cases} 1、损失函数,越小越好(例如:平方误差函数)\textcolor{red}{最常用的方法}\\ 2、设计一种新的函数,优化到其最大值 \end{cases} 优化的两种思路{1、损失函数,越小越好(例如:平方误差函数)最常用的方法2、设计一种新的函数,优化到其最大值

1.4 优化算法

  当我们获得了一些数据源及其表示、一个模型和一个合适的损失函数,接下来就需要一种算法,它能够搜索出最佳参数,以最小化损失函数。在深度学习中,大多数流行的优化算法通常基于一种基本方法,梯度下降 。梯度下降方法在每个步骤中都会检查每个参数,观察如果仅对该参数进行少量改动,训练集上的损失会朝哪个方向移动。然后,它在可以减少损失的方向上优化参数。

二、各种机器学习的问题

2.1 监督学习

  监督学习是在“给定输入特征”的情况下预测标签,每个“特征-标签”对都称为一个样本,即使标签是未知的,样本也可以指代输入特征。监督学习的目标是生成一个模型,该模型能够将任何输入特征映射到标签。
  监督学习的学习过程:
监督学习
  1、从已知大量数据样本中随机选取一个子集,为每个样本获取真实标签;
  2、选择有监督的学习算法,它将训练数据集作为输入,并输出一个“已完成学习的模型”;
  3、将之前没有见过的样本特征放到这个“已完成学习的模型”中,使用模型的输出作为相应标签的预测。
监督学习的应用 { 1 、回归问题:预测一个数值 2 、分类问题:预测是哪一类 3 、标注问题:多标签分类 4 、搜索问题:对搜索查询的结果进行筛选排序 5 、推荐系统:捕捉一个用户的偏好 6 、序列学习:如果是连续的输入,模型需要有记忆功能 监督学习的应用 \begin{cases} 1、回归问题:预测一个数值\\ 2、分类问题:预测是哪一类\\ 3、标注问题:多标签分类\\ 4、搜索问题:对搜索查询的结果进行筛选排序\\ 5、推荐系统:捕捉一个用户的偏好\\ 6、序列学习:如果是连续的输入,模型需要有记忆功能 \end{cases} 监督学习的应用 1、回归问题:预测一个数值2、分类问题:预测是哪一类3、标注问题:多标签分类4、搜索问题:对搜索查询的结果进行筛选排序5、推荐系统:捕捉一个用户的偏好6、序列学习:如果是连续的输入,模型需要有记忆功能

2.2 无监督学习

  数据样本中不含有“目标”的机器学习问题通常被称为无监督学习。
无监督学习 { 1 、聚类问题 2 、主成分分析 3 、因果关系和概率图模型 4 、生成对抗网络 无监督学习 \begin{cases} 1、聚类问题\\ 2、主成分分析\\ 3、因果关系 和概率图模型\\ 4、生成对抗网络 \end{cases} 无监督学习 1、聚类问题2、主成分分析3、因果关系和概率图模型4、生成对抗网络

2.3 强化学习强化学习

  在强化学习问题中,智能体(agent)与环境进行交互。在每个特定时间点,智能体从环境接受一些观测(observation),并且必须选择一个动作(action),然后通过某种机制将其输出回环境,最后智能体从环境获得奖励(reward),然后开始新一轮循环,智能体继续从环境中监测,选择后续动作并获得奖励,以此类推。

  强化学习的目标是产生一个好的策略(policy),强化学习智能体选择的“动作”受策略控制,即一个从环境观测映射到动作选择的功能。

  强化学习框架的通用性极强,一般来说,可以将任何监督学习问题转化为强化学习问题。一个分类问题,可以创建一个强化学习智能体,每个分类对应一个动作,创建一个环境后,该环境给与智能体奖励。这个奖励与原始监督学习问题的损失函数是一致的。

一些特殊情况下的强化学习问题:
  1、当环境可被完全观测到时,该问题被称为马尔科夫决策过程;
  2、当状态不依赖之前的动作时,该问题被称为上下文老虎机;
  3、当没有状态,只有一组最初未知奖励的可用动作时,该问题被称为多臂老虎机。

http://www.dinnco.com/news/70472.html

相关文章:

  • 营销推广包括几个方面seo试用软件
  • 什么企业需要网站建设软文技巧
  • 企业做网站这些问题必须要注意国内广告联盟平台
  • 如何在电脑上建立网站百度快照怎么做
  • 湖南网站建设推荐近期国内新闻热点事件
  • 做签证网站百度网盘app官网下载
  • 中国建设网 中国建设网网络优化工程师是干什么的
  • 网站维护的具体问题营销策划案的模板
  • 如何为网站做面包屑导航个人永久免费自助建站
  • phpcms网站备份网络营销收获与体会
  • 个人备案可以做盈利网站吗网站注册流程和费用
  • 杭州专业做网站公司外包公司
  • 湖南it网站建设mxtia怎么去营销自己的产品
  • wordpress 添加广告插件吗网站搜索引擎优化的方法
  • 网站管理入口南京seo网站管理
  • 可以先做网站后备案吗怎么在百度上推广
  • div使用太多影响网站收录上海全国关键词排名优化
  • 做网站找哪个seo哪家强
  • 保险公司网站建设方案竞价推广和seo的区别
  • 餐饮网站建设教程电脑网络优化软件
  • 做网站界面设计注意什么查网站
  • 网站开发名片线上销售渠道有哪几种
  • 专门做狗猫配套网站有什么意思查询域名注册信息
  • 佛山市多语言营销型网站建站高端网站设计
  • 公司做网站推广查询网站流量
  • 网站建设方案范例淄博seo网络公司
  • 宁波做网站seo的合肥seo推广培训班
  • 做网站分前台后端吗seo兼职怎么收费
  • 公装网站怎么做win10优化大师怎么样
  • 延吉做网站ybdiran国内最大的搜索引擎