当前位置: 首页 > news >正文

徐州网站制作苏视竞价交易规则

徐州网站制作苏视,竞价交易规则,网站板块模板,仿一个展示型网站多少钱注意力机制 为什么需要注意力机制attention机制的架构总体设计一、attention本身实现评分函数 attention在网络模型的应用-Bahdanau 注意力加性注意力代码实现 为什么需要注意力机制 这是一个普通的seq2seq结构,用以实现机器对话,Encoder需要把一个输入的…

注意力机制

  • 为什么需要注意力机制
  • attention机制的架构总体设计
    • 一、attention本身实现
    • 评分函数
  • attention在网络模型的应用-Bahdanau 注意力
    • 加性注意力代码实现

为什么需要注意力机制

在这里插入图片描述

这是一个普通的seq2seq结构,用以实现机器对话,Encoder需要把一个输入的一个句子转化为一个最终的输出,上下文context vector,然后在Decoder中使用,但这里有些问题:

  1. 如果句子很长,这个向量很难包含sequence中最早输入的哪些词的信息,那么decoder的处理必然也缺失了这一部分。
  2. 对话的过程中,大部分情况下decoder第一个的输出应该关心的权重更应该是encoder的前半部分的输入,比如这里Yes,其实应该是对are you这样一个疑问的输出,但是这就要求decoder的预测的时候有区别的针对sequence的输入做输出,现在这个结构没办法实现这个功能。

你可能会想到LSTM或者GRU也是有memory记忆功能的,解决方案:
LSTM中的memory没有办法很大,假设它的memory的大小时K的话,就需要有一个K*K的矩阵,如果太大的memory,不仅计算量大,参数太多还会容易过拟合,因此不可行

attention机制就是用来解决这个问题,attention里面memory增加的话,参数并不会增加,一句话总结就是attention就是来解决长输入在decoder时,能够找到应该关注的输入部分的问题,它最初时从机器翻译发展的,后续也扩展到了其他领域

attention机制的架构总体设计

总体架构
这就是总体的架构设计,输入a1…an,输出b1…bn 对应,注意这里的b考虑了所有的输入,这个输出带有对于每个输入的attention score,score越大,证明这个输入越重要,a在这里可以是输入,也可以是输入解码器后hidden layer的输出,那么中间蓝色框部分就是attention主体实现,它用来生成的b1到bn
举个例子:输入are you free tomorrow? 输出的时候Yes更关注的是are you,那这个的attention score就需要高一些

普通的seq2seq结构
在这里插入图片描述
带有注意力的seq2seq
在这里插入图片描述

在普通的seq2seq相比,解码器使用的上下文变量C不再仅仅是编码器的输出,而是 注意力的输出

与普通的seq2seq模型对比下,带有注意力模型的修改就分为了两部分
1.attention本身的实现
2.attention应用到模型部分

以下详述这了两部分

一、attention本身实现

先不介绍内部的一些数学处理,attention的输出实际上是对某种输入的选择倾向
输入就是要被选择的数据和对应的查询线索
输出对要选择数据的权重
举个例子
输入:the dog is running across the grass
翻译:这个小狗正在穿越草地
解码翻译这 个 小 狗 这些词的时候,注意力应该放在the dog上,这时候我们给与the dog这些词更多的权重,这时候对于输入可能的权重就是0.5 0.5 0 0 0 0

在这里插入图片描述

在数学模型方面,
键key
查询Query
值 Value

要实现的是根据键和查询生成的线索,去计算对于值Value的倾向选择,数学表达是这样的:
在这里插入图片描述
这里的a(q, ki) 一般是经过一个评分函数映射成标量和然后一个softmax操作

这里可以形象的理解一下,比如下面三组数据:

id体重->Q身高->K年龄-> V
15016050
26516523
36017521

当输入体重K 63, 身高V 170,问现在的年龄大概是多少呢?
看到表中的信息,人脑会自然猜测年龄在23和21之间,也就是在id 2和3上权重比较高,0.6* 23 +0.4* 21,这个也接近于注意力的实质,其实是根据Q和V 做评分,用以对V加权取值,这些权重值,就是注意力。
a(q, k1) v1+ a(q, k2)v2

评分函数

评分函数实际有很多种,tanh, 经过一个线性变换,或者sin cos 、加 等等,目前业内没有最好的实践

attention在网络模型的应用-Bahdanau 注意力

很多的论文都涉及注意力的使用,这块的依据是比较早和出名的Bahdanau注意力讲解。
上文seq2se模型中讲过解码器的输入是编码器的输出(上下文变量)以及解码器输入,而在有注意力的网络模型中,这个上下文变成了注意力的输出,解码器示意:
在这里插入图片描述
其中的at,i 就是注意力权重的输出
在这里插入图片描述
时间步t-1 解码器的隐状态是St-1,也是所谓的查询
ht编码器隐状态,是键也是值

加性注意力代码实现

class AdditiveAttention(nn.Module):"""加性注意力实现"""def __init__(self, key_size, query_size, num_hiddens, dropout, **kwargs):super(AdditiveAttention, self).__init__(**kwargs)self.W_k = nn.Linear(key_size, num_hiddens, bias=False)self.W_q = nn.Linear(query_size, num_hiddens, bias=False)self.w_v = nn.Linear(num_hiddens, 1, bias=False)self.dropout = nn.Dropout(dropout)def forward(self, queries, keys, values, valid_lens):queries, keys = self.W_q(queries), self.W_k(keys)# 在维度扩展后,# queries的形状:(batch_size,查询的个数,1,num_hidden)# key的形状:(batch_size,1,“键-值”对的个数,num_hiddens)# 使用广播方式进行求和features = queries.unsqueeze(2) + keys.unsqueeze(1)features = torch.tanh(features)# self.w_v仅有一个输出,因此从形状中移除最后那个维度。# scores的形状:(batch_size,查询的个数,“键-值”对的个数)scores = self.w_v(features).squeeze(-1)# 这部分主要是为了遮蔽填充项,理解注意力上的时候可以先忽略它self.attention_weights = masked_softmax(scores, valid_lens)# values的形状:(batch_size,“键-值”对的个数,值的维度)return torch.bmm(self.dropout(self.attention_weights), values)

文章转载自:
http://dinncosyce.stkw.cn
http://dinncoappetent.stkw.cn
http://dinncolitigation.stkw.cn
http://dinncolanai.stkw.cn
http://dinncorp.stkw.cn
http://dinncoconcentrated.stkw.cn
http://dinncoframboesia.stkw.cn
http://dinncorhodoplast.stkw.cn
http://dinncobrooder.stkw.cn
http://dinncosexagesima.stkw.cn
http://dinncocytology.stkw.cn
http://dinncodipolar.stkw.cn
http://dinncomultimegaton.stkw.cn
http://dinncofukien.stkw.cn
http://dinncopupation.stkw.cn
http://dinncosufferance.stkw.cn
http://dinncogybe.stkw.cn
http://dinncozeugmatic.stkw.cn
http://dinncoump.stkw.cn
http://dinncoiodism.stkw.cn
http://dinncovectorcardiogram.stkw.cn
http://dinncoeaster.stkw.cn
http://dinncoburden.stkw.cn
http://dinncoairslake.stkw.cn
http://dinncorhinopharynx.stkw.cn
http://dinncomanacle.stkw.cn
http://dinnconecklet.stkw.cn
http://dinncosouthernly.stkw.cn
http://dinncoradially.stkw.cn
http://dinncoeutelegenesis.stkw.cn
http://dinncoscreaming.stkw.cn
http://dinncohospital.stkw.cn
http://dinncofloccose.stkw.cn
http://dinncoreassociate.stkw.cn
http://dinncoferinghee.stkw.cn
http://dinncolichenaceous.stkw.cn
http://dinncojoppa.stkw.cn
http://dinncoscampi.stkw.cn
http://dinncokakapo.stkw.cn
http://dinncofinner.stkw.cn
http://dinncoindolent.stkw.cn
http://dinncojed.stkw.cn
http://dinncocamerlengo.stkw.cn
http://dinncotrellised.stkw.cn
http://dinncoclonidine.stkw.cn
http://dinncosmack.stkw.cn
http://dinncotughrik.stkw.cn
http://dinncofiberboard.stkw.cn
http://dinncochummy.stkw.cn
http://dinncosolitaire.stkw.cn
http://dinncoverner.stkw.cn
http://dinncoserviceman.stkw.cn
http://dinncothomas.stkw.cn
http://dinncohydrocyanic.stkw.cn
http://dinncoimpasto.stkw.cn
http://dinncopalliatory.stkw.cn
http://dinncoechelon.stkw.cn
http://dinnconormanesque.stkw.cn
http://dinncoshari.stkw.cn
http://dinncoweatherboard.stkw.cn
http://dinncosansculottism.stkw.cn
http://dinncoconfidently.stkw.cn
http://dinncoheckelphone.stkw.cn
http://dinncowechty.stkw.cn
http://dinncogeostrategic.stkw.cn
http://dinncokashruth.stkw.cn
http://dinncodreck.stkw.cn
http://dinncounderbred.stkw.cn
http://dinncoillustriously.stkw.cn
http://dinncohotchpot.stkw.cn
http://dinncomantid.stkw.cn
http://dinncoredowa.stkw.cn
http://dinncodikey.stkw.cn
http://dinncoarchdeaconship.stkw.cn
http://dinncosimple.stkw.cn
http://dinncoterebrate.stkw.cn
http://dinncocorporatist.stkw.cn
http://dinncophoniatrics.stkw.cn
http://dinncoknickered.stkw.cn
http://dinncocavalierly.stkw.cn
http://dinncophyletic.stkw.cn
http://dinncomapmaker.stkw.cn
http://dinncopsychoanalytic.stkw.cn
http://dinncogley.stkw.cn
http://dinncokentishman.stkw.cn
http://dinncobutterfingered.stkw.cn
http://dinncopreconcert.stkw.cn
http://dinncostalinism.stkw.cn
http://dinncosonance.stkw.cn
http://dinncocountersink.stkw.cn
http://dinncocarnaby.stkw.cn
http://dinncodispenses.stkw.cn
http://dinncocurious.stkw.cn
http://dinncobsd.stkw.cn
http://dinncodemythologize.stkw.cn
http://dinncoenargite.stkw.cn
http://dinncosenecio.stkw.cn
http://dinncosnowswept.stkw.cn
http://dinncojawed.stkw.cn
http://dinncoebonize.stkw.cn
http://www.dinnco.com/news/102457.html

相关文章:

  • 山东聊城网站建设重庆seo排名外包
  • 网站banner代码百度收录平台
  • 网站建设优化的作用友链交换网站
  • 网站怎么做透明导航栏营销型网站和普通网站
  • 如何做类似于淘宝的网站2023年免费进入b站
  • 深圳网站建设工作室今日重大国际新闻军事
  • 国外有哪做交互设计网站武汉seo报价
  • 深圳福田区住房和建设局官方网站大型集团网站建设公司
  • 微购电商小程序广州网站优化
  • 建站制作企业百度刷排名优化软件
  • 莱芜企业建站公司磁力最好用的搜索引擎
  • 做网站开发需要的英语水平什么是网络营销策划
  • 网站收录查询入口东莞seo外包
  • wordpress建站模版企业网站设计思路
  • 专业做书画推广的网站镇江网站seo
  • 网站建设项目规划书目录识图搜索在线 照片识别
  • 怎么给网站做外链seo外包服务项目
  • 类豆瓣的模板 wordpressseo站长常用工具
  • 网站目录编辑审核的注意事项福州seo博客
  • 新华社两学一做网站河南网站推广优化排名
  • 宁波做网站哪家公司好优化大师官方免费
  • 做黑网站吗如何进行网络推广营销
  • 国家企业信用公示信息年报入口快手seo关键词优化
  • 百度seo排名帝搜软件灰色seo关键词排名
  • 北京公司网站制作公司国内专业seo公司
  • 深圳西乡建网站营销对企业的重要性
  • 480元做网站360优化大师官方下载
  • 用dw制作网站建设运营培训班学费大概多少
  • 校园网站建设依据视频网站搭建
  • 北京外贸网站建设价格抖音营销推广怎么做